Stateful Software Systems: Unraveling the Complexities of Transient
Data Management

Laura Carnevali Benedetta Picano Riccardo Reali Leonardo Scommegna
Roberto Verdecchia Enrico Vicario

Dept. of Information Engineering, University of Florence
Software Technologies Lab - https://stlab.dinfo.unifi.it

QuallTA'24
Venice, June 2024

o this is about:
o Transient data management in software systems
o How transient data identifies an underlying concurrent process
o What are the consequences in terms of reliability
e Some strategies to improve reliability

STLab Quallta 2024 - Venice 1/18


https://stlab.dinfo.unifi.it

Concurrent Process

Software System Common Oganization

@ A client interacts with the system

through the user interface; Presentation

@ The presentation layer converts the T T
interaction in an input for the @ ﬁ
Business Layer;

Business

@ The business layer, starts an
elaborating process possibly
encompassing the data layer; @ ﬁ

@ Once finished, the business layer
forwards the response to the
presentation layer;

Data

STLab Quallta 2024 - Venice 2/18



Concurrent Process

Business Logic Composition

o Controllers:

o Implement Page or View
Controller pattern !

o Responsible for inputs from a Paged

specific page or from the entire

application
o Helper components:

o Provide auxiliary services

o Usually injected in dependent

components

(dependency injection pattern)

o Can be shared among multiple

components

—————— PRESENTATION LAYER
User Interface
N [N

BUSINESS LOGIC LAYER

PageBCq

Application Logic

PageCC

PageAController

- v
HelperComponent2

> HelperComponent2

B Buschmann, Henney and Schmidt, “Pattern-Oriented Software Architecture, A Pattern Language for Distributed Computing”, Volume 4. 2007.

STLab

Quallta 2024 - Venice

3/18



Concurrent Process

Stateful Business Transactions

@ Use cases can not be always stateless business transactions

o Session state®: a state with a transient nature usually stored in-memory
@ Example: the shopping cart in an e-commerce web application

@ Business logic components take care of session state management

A stateful business transaction implies a stateful application business logic

Business logic components become stateful

Although necessary, stateful business logic requires a higher level of complexity

2Fowler, Martin, "Patterns of Enterprise Application Architecture” Addison-Wesley 2012

STLab Quallta 2024 - Venice 4/18



Concurrent Process

Dependency Injection Frameworks

@ DI container responsibilities:
o Creates the dependency component
o Injects the dependency in the client component
o Destroys the dependency when no longer needed

o Implements an automatic life cycle management mechanism
@ Rely on Visibility Context concept
@ Pervasive paradigm considered a best practice
@ Main challenges addressed:

o Scalability: automatic resolution through meta-information

o Stateful dependency injection: achieved through visibility contexts

g " DI Container  ,

dnjectr " «creates»
DependentComponent Dependency
o>

STLab Quallta 2024 - Venice 5/18



Concurrent Process

Examples of DI frameworks

o Context and Dependency Injection (CDI):

o Part of the Java/Jakarta Enterprise Edition (JEE) set of specifications

e Popular framework to manage backend-side application logic
i.e., Stateful Architectures

o Contexts shaped by the HTTP: application, request, and session scope

o Angular:

o Popular framework to manage client-side application logic
i.e., Service Oriented Architectures

o User interactions on the interface mark the context life cycle
o Life cycle usually tied to the life cycle of a Ul widget

o Note that a widget can be composed of multiple widgets (composite structure)

STLab Quallta 2024 - Venice 6/18



Concurrent Process

Business Logic Runtime Evolution

A
r
InstanceF

(o]
s ol | [l
u 0 i InstanceE

t
S
! InstanceD
n ey a
‘: C InstanceC
s 0 o | e -

Instc B

L n Instancel
° ¢ e U (g S N P R
g
i el F-=---F-cdcclaana--
c Q

Xjcr InstanceA

e Voo 1

- .
'
Int#1) Int#2| |Int#3] Int#4] Int#5] Int#6) Int#7 Time
s te te te te te te t t.

o X-axis: requests arriving over (continuous) time
@ Y-axis: Instances (green) and Contexts (purple)
@ Set of alive stateful instances constitutes the internal state of the system

STLab Quallta 2024 - Venice 7/18



Concurrent Process

Business Logic Runtime Evolution

A
r
| InstanceF

[
B
u 0 | InstanceE

t
s
! InstanceD
n el a )
e C InstanceC
o T S S S -
s 0 Q
L n InstanceB
[ [0 [ T S S
9
i el -------=4-====-~-
c )

Xjcr InstanceA

[ (L A 1 S S

- >
>
Int#1 Int#2| |Int#3] Int#4] Int#5) Int#6) Int#7 Time
t. tt t. t te te te te te

.o
@ Internal state evolves over time as a result of:

o Application logic defined at static time by the code

e Sequence of interactions issued by the user at runtime

o Rules and mechanisms of the third party DI framework

STLab Quallta 2024 - Venice 8/18



Downsides of Transient Data Management

Downsides of Transient Data Management

@ Behavior of the system depends on its internal state

Challenge: predict the evolution of the internal state and its effects is hard

o Aggregation of components with different lifecycles reduces designer control

Considering the effect of all the possible input sequences is unfeasible

@ DI frameworks include additional opacity to the state evolution process

Testability: business logic usually tested without the DI container

STLab Quallta 2024 - Venice 9/18



Fault Model

@ Taxonomy of fault types:

@ Reflect structural characteristics of managed components

ShorterScope

LongerScope
WrongConformance
EarlyOrUndueClosure
LateOrMissingClosure
LateOrMissingBegin
MissingStateClearance
ErroneousDynamiclnjection

@ Covers major complexities and issues

o Observed during the STLab Development Experience
o Reported by developers of different levels of skills

o Posted on technical social forums (e.g., Stack Overflow, GitHub)

STLab

Quallta 2024 - Venice

10/18



Downsides of Transient Data Management

Failure Modes

o Faults may result in various kinds of errors in the sw components

@ Errors may eventually cause various types of deviations in the functional behavior
delivered by the Ul:

o Vanishing Component: An injected component may not live and maintain its state
with continuity along the time interval needed by its dependants

o Zombie Component: an injected component may remain alive with continuity while a
dependent component expects that it is destroyed and restarted

o Unexpected Shared Component: A context may remain continuously active so as to
be accessible by two or more concurrent dependent contexts

o Unexpected Injected Component: The type of a required component may be wrongly
specified at its injection point

STLab Quallta 2024 - Venice 11/18



Downsides of Transient Data Management

Vanishing and Zombie Component: correct vs faulty behavior

@ Vanishing Component:

Cor+ H | (P X:
Ci- ; \ C1 ] —
T T T T I T
R R, ' Rg R R, ' Rg
@ Zombie Component:
; s $
Co I?I Gl
3 i r
C14 f ‘. ‘ Cq4 l |
T T T T T T
R1 Ra R3 R1 Ra Rs

STLab Quallta 2024 - Venice 12/18



Downsides of Transient Data Management

Unexpected Shared and Injected Component: correct vs faulty behavior

@ Unexpected Shared Component:

C3
Co- DE

|
|
C

@ Unexpected Injected Component:

: $ 3
Co — Co i ——
Cq : | Ci+ |
T T T T | T
R4 Ro Rs R4 Ry R3

STLab Quallta 2024 - Venice 13/18



STLab

Fighitng Fault with MBT

Fighting Faults through Model-Based Testing®

o Managed Component Data Flow
Graph Abstraction (mcDFG)

o Aware of:
e Application logic

o Navigation design
o DI container mechanisms

@ Aimed to find faults causing
identified failures

@ Test case selection guided by
various coverage criteria

AdministratorPage (- -

nav AirportController::goToAirportListPage()
DEF AirportController
1 ) |DEF AirportDao
USE AirportController
b begin enclosed
Airportlist == === 2 |USE AirportDao
nav AirportControlier:iredirectToHome()
3 | USE AirportController

cb end enclosed

nav AirportController: viewAirport()

r N

U

AirportView [ == ===+ 4 ) USE AirportController

nav AirportController::goToAirportListPage()
v
AirportList - - - ==~ 5 ) [USE AirportController.
nav AirportController::viewAirport()

nav AirportController:iredirectToHome()

3Scomrnegna, Verdecchia, Vicario. Unveiling Faulty User Sequences: A Model-Based Approach to Test Three-Tier Software Architectures. JSS, 2024

Quallta 2024 - Venice 14 /18



Details of Paths Selection

Each mcDFG Path:

o Suggests a Test Case

o Represents a sequence of user
interaction

o Triggers a specific business logic
and DI container behavior

o A Coverage Criteria suggests
a Test Suite
o Gray Box Testing:

o Web Driver simulate
User Interaction

o Assertion may concern Ul
or Application State

Implemented with Arquillian Warp
and Selenium WebDriver

Quallta 2024 - Venice

def HomeController
def FlightDao

Nay

HomeControler SearchByQuery :
use HomeController
use FlightDao

b
end conversation

5
begin conversstion
def BookingController
def ReservationDao

i Nav
£ BookingController::beginBdoking

use BookingController

nav
BookingCt

use BookingController

ndy
BodkingController::saveRe: na
5, BookingController::cancel

use BookingController use BookingController
use ReservationDao

15/18



Complete Testing Methodology*

Phase 1 Legend

mcDFG Generation

Automatic Step

Step 1
Business and
Navigation Logic
Acquisition

Automatable Step

Use Case
i Business and Manual Step
Navigation Logic Data

Coverage -

Citerion

mcDFG

Phase 2
Test Case Generation Based on the mcDFG

Tests Generation Tests Fine Tuning

Test
Execution
Report

Tests ;

4$Commegna, Verdecchia, Vicario. Unveiling Faulty User Sequences: A Model-Based Approach to Test Three-Tier Software Architectures. JSS, 2024
STLa Quallta 2024 - Venice 16 /18




Fighitng Fault with MBT

Results

Abstraction Coverage Test Suite Interactions Fault Detection Capability

Criterion Dimension per Test Case (%)

All Nodes 1.18 6.09 100

All Edges 1.27 9.25 100
mcDFG All Defs 1.18 3.09 84.37
All Uses 2.27 5.04 100

All DU Paths 3.09 7.76 100
All Pages 2 18 28.12

PND All Navigations 3 26.33 50

o Feasible Number of Tests even for expensive coverage criteria: a few tens
of test cases in the worst cases

@ Good Fault Detection Capacity: so far DFG has always detected the injected fault

@ Test case generation is fast once the initial setup is configured

STLab Quallta 2024 - Venice 17 /18



Discussion and Conclusion

Discussion and Conclusion

instrumentation tool *

framework

Analyses

&

Monitor

5$commegna, Verdecchia, Vicario. Unveiling Faulty User Sequences: A Model-Based Approach to Test Three-Tier Software Architectures. JSS, 2024

Parri, Sampietro, Scommegna, Vicario. Evaluation of software aging in component-based web applications subject to soft errors over time, WoSAR,

2021

Scommegna, Picano, Verdecchia, Vicario. OREO: A Tool-Supported Approach for Offline Run-time Monitoring and Fault-Error-Failure Chain

Localization, STVR Under Revision

STLab Quallta 2024 - Venice

Instrumentation

Evolution of the system state as a concurrent process
Fault hidden in code captured through ad-hoc MBT methodology®
Lifecycle management as partial Software Rejuvenation of the system state®

Runtime extraction of the concurrent process with a minimal intrusive

Ongoing direction: using the extractor to implement a Runtime Verification

System

-

Business Logic

8

— [ Intercepts




	Concurrent Process
	Downsides of Transient Data Management
	Fighitng Fault with MBT
	Discussion and Conclusion

