
Stateful Software Systems: Unraveling the Complexities of Transient
Data Management

Laura Carnevali Benedetta Picano Riccardo Reali Leonardo Scommegna
Roberto Verdecchia Enrico Vicario

Dept. of Information Engineering, University of Florence

Software Technologies Lab - https://stlab.dinfo.unifi.it

QualITA’24

Venice, June 2024

this is about:
Transient data management in software systems

How transient data identifies an underlying concurrent process

What are the consequences in terms of reliability

Some strategies to improve reliability

STLab QualIta 2024 - Venice 1 / 18

https://stlab.dinfo.unifi.it

Concurrent Process

Software System Common Oganization

A client interacts with the system
through the user interface;

The presentation layer converts the
interaction in an input for the
Business Layer;

The business layer, starts an
elaborating process possibly
encompassing the data layer;

Once finished, the business layer
forwards the response to the
presentation layer;

Data

Presentation

Business

STLab QualIta 2024 - Venice 2 / 18

Concurrent Process

Business Logic Composition

Controllers:

Implement Page or View
Controller pattern 1

Responsible for inputs from a
specific page or from the entire
application

Helper components:

Provide auxiliary services

Usually injected in dependent
components
(dependency injection pattern)

Can be shared among multiple
components

PRESENTATION LAYER

BUSINESS LOGIC LAYER
Application Logic

PageBController

User Interface

etc...

etc...

PageA

PRESENTATION LAYER

PageC

PageAController HelperComponent2

HelperComponent2

PageCController

PageB

1
Buschmann, Henney and Schmidt, “Pattern-Oriented Software Architecture, A Pattern Language for Distributed Computing”, Volume 4. 2007.

STLab QualIta 2024 - Venice 3 / 18

Concurrent Process

Stateful Business Transactions

Use cases can not be always stateless business transactions

Session state2: a state with a transient nature usually stored in-memory

Example: the shopping cart in an e-commerce web application

Business logic components take care of session state management

A stateful business transaction implies a stateful application business logic

Business logic components become stateful

Although necessary, stateful business logic requires a higher level of complexity

2
Fowler, Martin, “Patterns of Enterprise Application Architecture” Addison-Wesley 2012

STLab QualIta 2024 - Venice 4 / 18

Concurrent Process

Dependency Injection Frameworks

DI container responsibilities:

Creates the dependency component

Injects the dependency in the client component

Destroys the dependency when no longer needed

Implements an automatic life cycle management mechanism

Rely on Visibility Context concept

Pervasive paradigm considered a best practice

Main challenges addressed:

Scalability: automatic resolution through meta-information

Stateful dependency injection: achieved through visibility contexts

DependentComponent Dependency

DI Container

«creates»«inject»

STLab QualIta 2024 - Venice 5 / 18

Concurrent Process

Examples of DI frameworks

Context and Dependency Injection (CDI):

Part of the Java/Jakarta Enterprise Edition (JEE) set of specifications

Popular framework to manage backend-side application logic
i.e., Stateful Architectures

Contexts shaped by the HTTP: application, request, and session scope

Angular:

Popular framework to manage client-side application logic
i.e., Service Oriented Architectures

User interactions on the interface mark the context life cycle

Life cycle usually tied to the life cycle of a UI widget

Note that a widget can be composed of multiple widgets (composite structure)

STLab QualIta 2024 - Venice 6 / 18

Concurrent Process

Business Logic Runtime Evolution

Int#6

InstanceD

Int#1

t1 t2 t2 t3 t3

InstanceA

Int#2

InstanceB

InstanceC

Int#4Int#3

C1

C2 C3

Int#5

InstanceF

InstanceE

Int#7

....r
o
o
t

c
o
n
t
e
x
t

t4 t5 t6 t7t4 t5 t6 t7

B
u
s
i
n
e
s
s

L
o
g
i
c

Time

X-axis: requests arriving over (continuous) time

Y-axis: Instances (green) and Contexts (purple)

Set of alive stateful instances constitutes the internal state of the system

STLab QualIta 2024 - Venice 7 / 18

Concurrent Process

Business Logic Runtime Evolution

Int#6

InstanceD

Int#1

t1 t2 t2 t3 t3

InstanceA

Int#2

InstanceB

InstanceC

Int#4Int#3

C1

C2 C3

Int#5

InstanceF

InstanceE

Int#7

....r
o
o
t

c
o
n
t
e
x
t

t4 t5 t6 t7t4 t5 t6 t7

B
u
s
i
n
e
s
s

L
o
g
i
c

Time

Internal state evolves over time as a result of:
Application logic defined at static time by the code

Sequence of interactions issued by the user at runtime

Rules and mechanisms of the third party DI framework

STLab QualIta 2024 - Venice 8 / 18

Downsides of Transient Data Management

Downsides of Transient Data Management

Behavior of the system depends on its internal state

Challenge: predict the evolution of the internal state and its effects is hard

Aggregation of components with different lifecycles reduces designer control

Considering the effect of all the possible input sequences is unfeasible

DI frameworks include additional opacity to the state evolution process

Testability: business logic usually tested without the DI container

STLab QualIta 2024 - Venice 9 / 18

Downsides of Transient Data Management

Fault Model

Taxonomy of fault types:
ShorterScope

LongerScope

WrongConformance

EarlyOrUndueClosure

LateOrMissingClosure

LateOrMissingBegin

MissingStateClearance

ErroneousDynamicInjection

Reflect structural characteristics of managed components

Covers major complexities and issues

Observed during the STLab Development Experience

Reported by developers of different levels of skills

Posted on technical social forums (e.g., Stack Overflow, GitHub)

STLab QualIta 2024 - Venice 10 / 18

Downsides of Transient Data Management

Failure Modes

Faults may result in various kinds of errors in the sw components

Errors may eventually cause various types of deviations in the functional behavior
delivered by the UI:

Vanishing Component: An injected component may not live and maintain its state
with continuity along the time interval needed by its dependants

Zombie Component: an injected component may remain alive with continuity while a
dependent component expects that it is destroyed and restarted

Unexpected Shared Component: A context may remain continuously active so as to
be accessible by two or more concurrent dependent contexts

Unexpected Injected Component: The type of a required component may be wrongly
specified at its injection point

STLab QualIta 2024 - Venice 11 / 18

Downsides of Transient Data Management

Vanishing and Zombie Component: correct vs faulty behavior

Vanishing Component:

C1

C2

R1 R2 R3

C1

C2

R1 R2 R3

Zombie Component:

C1

C2

R1 R2 R3

C1

C2

R1 R2 R3

STLab QualIta 2024 - Venice 12 / 18

Downsides of Transient Data Management

Unexpected Shared and Injected Component: correct vs faulty behavior

Unexpected Shared Component:

C1

C2

R1 R2 R3

C3

C1

C2

R1 R2 R3

C3

Unexpected Injected Component:

C1

C2

R1 R2 R3

C1

C3

R1 R2 R3

STLab QualIta 2024 - Venice 13 / 18

Fighitng Fault with MBT

Fighting Faults through Model-Based Testing3

Managed Component Data Flow
Graph Abstraction (mcDFG)

Aware of:
Application logic

Navigation design

DI container mechanisms

Aimed to find faults causing
identified failures

Test case selection guided by
various coverage criteria

AdministratorPage

nav AirportController::goToAirportListPage()

cb begin enclosed

AirportList

0

DEF AirportController
DEF AirportDao
USE AirportController

1

USE AirportDao2

nav AirportController::redirectToHome()

nav AirportController::viewAirport()

AirportView

nav AirportController::goToAirportListPage()

nav AirportController::viewAirport()

USE AirportController3

USE AirportController4

USE AirportController5

cb end enclosed

nav AirportController::redirectToHome()

AirportList

3
Scommegna, Verdecchia, Vicario. Unveiling Faulty User Sequences: A Model-Based Approach to Test Three-Tier Software Architectures. JSS, 2024

STLab QualIta 2024 - Venice 14 / 18

Fighitng Fault with MBT

Details of Paths Selection

Each mcDFG Path:
Suggests a Test Case
Represents a sequence of user
interaction
Triggers a specific business logic
and DI container behavior

A Coverage Criteria suggests
a Test Suite

Gray Box Testing:
Web Driver simulate
User Interaction
Assertion may concern UI
or Application State

Implemented with Arquillian Warp
and Selenium WebDriver

cb
begin conversation

def BookingController

def HomeController
def FlightDao

use HomeController

def ReservationDao

use FlightDao

HomeController::SearchByQuery
Nav

Nav
BookingController::beginBooking

use BookingController

nav
BookingController::summary

use BookingController

nav
BookingController::back

BookingController::saveReservation
nav

use BookingController
use ReservationDao

nav
BookingController::cancel

use BookingController

cb
end conversation

STLab QualIta 2024 - Venice 15 / 18

Fighitng Fault with MBT

Complete Testing Methodology4

Use Case

Tests

Tests

Test
Execution

Report

mcDFG

Phase 1
mcDFG Generation

Business and
Navigation Logic Data

Phase 2
Test Case Generation Based on the mcDFG

Step 5
Tests Fine Tuning

Step 3
Paths Selection

Step 4
Tests Generation

Step 6
Tests Execution

Step 1
Business and

Navigation Logic
Acquisition

Step 2
Model Creation

Tests

Coverage
Criterion

Manual Step

Automatable Step

Automatic Step

Legend

mcDFG
Paths

4
Scommegna, Verdecchia, Vicario. Unveiling Faulty User Sequences: A Model-Based Approach to Test Three-Tier Software Architectures. JSS, 2024

STLab QualIta 2024 - Venice 16 / 18

Fighitng Fault with MBT

Results

Abstraction
Coverage Test Suite Interactions Fault Detection Capability
Criterion Dimension per Test Case (%)

mcDFG

All Nodes 1.18 6.09 100
All Edges 1.27 9.25 100
All Defs 1.18 3.09 84.37
All Uses 2.27 5.04 100
All DU Paths 3.09 7.76 100

PND
All Pages 2 18 28.12
All Navigations 3 26.33 50

Feasible Number of Tests even for expensive coverage criteria: a few tens
of test cases in the worst cases

Good Fault Detection Capacity: so far DFG has always detected the injected fault

Test case generation is fast once the initial setup is configured

STLab QualIta 2024 - Venice 17 / 18

Discussion and Conclusion

Discussion and Conclusion

Evolution of the system state as a concurrent process

Fault hidden in code captured through ad-hoc MBT methodology5

Lifecycle management as partial Software Rejuvenation of the system state6

Runtime extraction of the concurrent process with a minimal intrusive
instrumentation tool 7

Ongoing direction: using the extractor to implement a Runtime Verification
framework

System

Business Logic

Instrumentation

Intercepts

Monitor

Updates

Analyses

5
Scommegna, Verdecchia, Vicario. Unveiling Faulty User Sequences: A Model-Based Approach to Test Three-Tier Software Architectures. JSS, 2024

6
Parri, Sampietro, Scommegna, Vicario. Evaluation of software aging in component-based web applications subject to soft errors over time, WoSAR,

2021
7
Scommegna, Picano, Verdecchia, Vicario. OREO: A Tool-Supported Approach for Offline Run-time Monitoring and Fault-Error-Failure Chain

Localization, STVR Under Revision

STLab QualIta 2024 - Venice 18 / 18

	Concurrent Process
	Downsides of Transient Data Management
	Fighitng Fault with MBT
	Discussion and Conclusion

