A Tool for Efficient Derivation of Optimal Signal Schedules for Multimodal Intersections

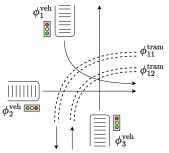
Nicola Bertocci Laura Carnevali Leonardo Scommegna Enrico Vicario

Dept. of Information Engineering, University of Florence

Software Technologies Lab - https://stlab.dinfo.unifi.it

{nicola.bertocci, laura.carnevali, leonardo.scommegna, enrico.vicario}@unifi.it

EPEW'24

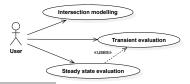

Venice, June 2024

- this is about:
 - · Evaluation of the impact of right-of-way tram traffic over car traffic
 - Multimodal intersection of multiple car flows and tram tracks
 - Omnibus Java Library for compositional intersection analysis
 - ... enabling efficient identification of optimal signal scheduling

Introduction

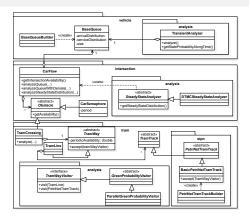
Tramways and Multimodal Car Intersections

- Pros: Improve sustainability and urban transportation
- Cons: impact availability of car intersection due to right-of-way policy
- Aim: evaluate and mitigate the impact of trams in car traffic
- **Challenge**: impact depends on various factors e.g., semaphore scheduling, arrival rate, and periodicity of tram traffic

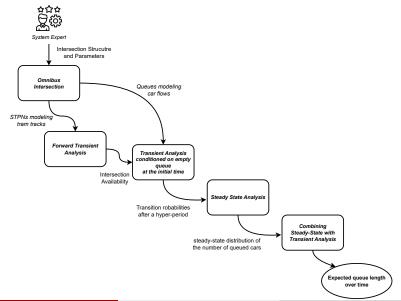


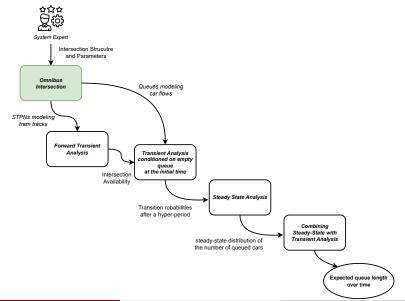
Analysis of Urban Intersection

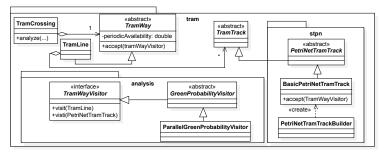
- Modelling urban transportation systems:
 - Support early assessment and runtime adaptation of design choices
 - measures of interest: expected queue lengths, waiting times, expected fuel consumption
- Microscopic models:
 - Represent behavior of individual vehicles
 - Capture interactions among vehicles and fine details about driver actions e.g., impatience
 - Expensive to analyse and do not scale with queue size
- Macroscopic models:
 - Encode aggregated features e.g., density, flow, and average speed
 - Computational efficient
 - Structurally missing the representation of synchronous phenomena like tram arrivals


Omnibus Java Library 1/2

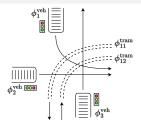
- Evaluation of multimodal intersection with right-of-way tram traffic ¹
- Compositional approach for efficient intersection analysis
 - Microscopic Model for Tram Traffic evaluation with Stochastic Time Petri Nets (STPNs)
 - Macroscopic Model for Car Traffic evaluation with finite-capacity vacation queues
- Representation of complex intersections with the metamodel
- Calculation of the intersection availability over time
- Steady-state distribution of the **number of queued cars** at multiples of the hyper-period (i.e. l.c.m. of tram and car semaphore periods)
- Evaluate the expected number of queued cars over time


¹available at https://github.com/oris-tool/omnibus under the AGPL v3 licence

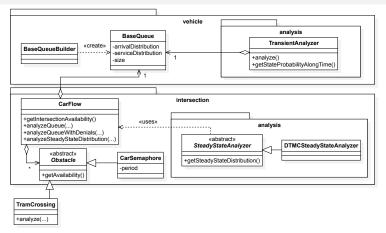

Omnibus Java Library 2/2


- Designed to facilitate maintainability and extensibility
- Intuitive headless interface
- Easily integrable in complex analysis workflows
 - Analysis of relevant use cases for operation and management of the intersection
 - Already tested to derive optimal signal scheduling²

²Bertocci, Carnevali, Scommegna, Vicario. Efficient derivation of optimal signal schedules for multimodal intersections. SIMPAT 2024

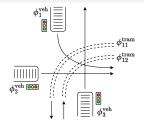

Intersection Modelling in Omnibus - Tramway

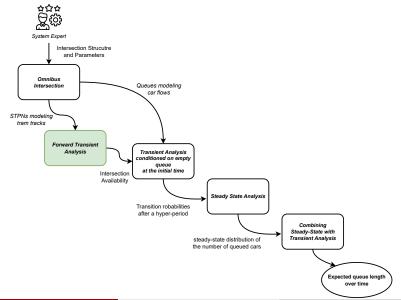
- Independent multiple-track tram lines with right of way over car flows
- DET inter-arrival times with DET offsets (phases)
- Each arrival is characterized by GEN delays possibly with bounded support
- GEN intersection crossing times


Intersection Modelling in Omnibus - Tramway

parameter	value
tram line period	220 s
Φ_{11}^{tram} offset	0 s
Φ_{12}^{tram} offset	40 s
Φ_{11}^{tram} delay distribution	UNIF(0 s,120 s)
$\Phi_{12}^{\mathrm{tram}}$ delay distribution	UNIF(0 s,40 s)
Φ_{11}^{tram} , Φ_2^{tram} crossing time distribution	UNIF(6 s,14 s)

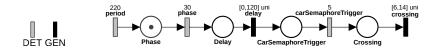

```
1 // track 1 parameter definition
2 BigInteger t1_periodTime = BigInteger.valueOf(220);
3 BigInteger t1 phaseTime = BigInteger.ZERO:
4 BigInteger t1 delavEFTime = BigInteger.ZER0;
5 BigInteger t1_delayLFTime = BigInteger.valueOf(120);
6 BigInteger t1 crosslightAntTime = BigInteger.valueOf(5):
7 BigInteger t1_leavingEFTime = BigInteger.valueOf(6);
8 BigInteger t1_leavingLFTime = BigInteger.valueOf(14);
9 // track 1 instantiation
10 PetriNetTramTrack bin1 = PetriNetTramTrackBuilder.getInstance(t1 name, t1 periodTime,
       t1_phaseTime, t1_delayEFTime, t1_delayLFTime, t1_crosslightAntTime, t1_leavingEFTime,
        t1_leavingLFTime);
11 // track 2 instantiation
13 // tram line definition
14 TramLine tramLine = new TramLine("line1");
15 tramLine.addTramTrack(bin1, bin2);
16 // tram cross definition
17 TramCrossing tramCross = new TramCrossing(tramLine);
```


Intersection Modelling in Omnibus - Road Intersection


- Independent single-lane car flows associated with a queue
- EXP inter-arrival times, EXP intersection leaving times
- A semaphore with period P associated with every car flow
- semaphore and tram crossing as obstacles for the car flow

Intersection Modelling in Omnibus - Road Intersection

parameter	value
traffic light period	110 s
$\Phi_1^{ m veh}$ arrival rate	$0.05 { m s}^{-1}$
Φ_2^{veh} arrival rate	$0.1 { m s}^{-1}$
$\Phi_3^{\overline{v}eh}$ arrival rate	$0.15 { m s}^{-1}$
Φ_1^{veh} , Φ_2^{veh} , Φ_3^{veh} leaving rate	$0.092{ m s}^{-1}$

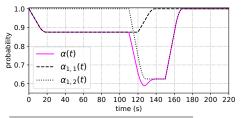



```
1 // vehicle flow 1 parameter definition
2 BigDecimal arrivalRate1 = BigDecimal.valueOf(0.05);
3 BigDecimal mu = BigDecimal.valueOf(0.092);
4 BigInteger maxQueueSize = BigInteger.valueOf(31);
5 BigInteger initialCars = BigInteger.valueOf(0);
6 // vehicle flow 1 instantiation
7 CarFlow carFlow1 = new CarFlow("carFlow1");
8 carFlow1.setQueue(BaseQueueBuilder.getInstance(arrivalRate1,mu,maxQueueSize,initialCars));
9 // vehicle flow 2 and 3 instantiation
11 // semaphore instatiation with period 110s
12 CarSemaphore carSem1 = new CarSemaphore(new BigInteger("110"), TIMESTEP);
I3 CarSemaphore carSem2 = new CarSemaphore(new BigInteger("110"). TIMESTEP):
14 CarSemaphore carSem3 = new CarSemaphore(new BigInteger("110"), TIMESTEP);
15 // adding obstacles to vehicle flow 1
16 carFlow1.addObstacle(tramCross);
17 carFlow1.addObstacle(carSem1);
18
 // adding obstacle to vehicle flows 2 and 3
19
  . . .
```


Microscopic model of tram traffic

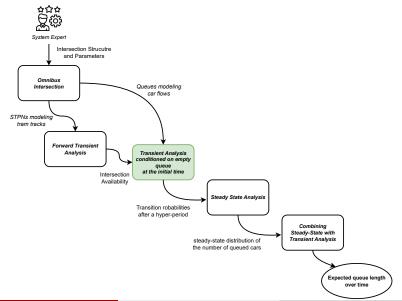
- Tram track model in terms of Stochastic Time Petri Net (STPN)
- Fitting observed data by means of GEN distributions ³
 - Delay (wrt the nominal arrival time) never observed to be larger than 120 s \Rightarrow modeled by a uniform distribution over [0, 120] s
 - Crossing time observed to have mean $\omega = 10 \, s$ and standard deviation $\sigma = 4 \, s$ \Rightarrow modeled by a uniform distribution over $[\mu - \sigma, \mu + \sigma] = [6, 14] \, s$
 - Any other distribution in the class of expolynomial functions could be used
- Deterministic temporal parameters
 - Periodic inter-arrival times with period $T = 220 \, {
 m s}$ and phase $O = 30 \, {
 m s}$
 - Travel time from the wayside system to the intersection 5 s (time advance with which car semaphores are triggered red wrt tram arrival)

EPEW 2024


³Carnevali et al, "Stochastic modeling and analysis of road-tramway intersections", Innovations in Systems and Software Engineering, 2020

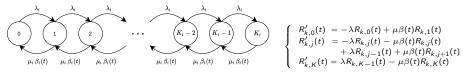
Evaluation of the intersection availability for car traffic

- Forward transient analysis of the STPN of each track (separate analyses)⁴
 - Derives the transient probabilities of the reachable markings, which yield the transient probability that no tram of the track is crossing the intersection
- A tram line consisting of two tram tracks
 - α_i(t):=Prob{no tram of track i is occupying the intersection}
 - $\alpha(t):=$ Prob{no tram is occupying the intersection}= $\prod \alpha_i(t)$

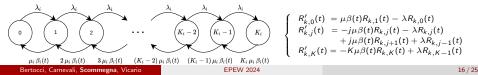

```
1 // tram crossings analysis
```

2 tramCross.analyze(new ParallelGreenProbabilityVisitor(), timeStep);

parameter	value
tram line period	220 s
$\Phi_{11}^{\mathrm{tram}}$ offset	0 s
Φ_{ram}^{tram} offset	40 s
Φ_{11}^{12} delay distribution	UNIF(0 s,120 s)
$\Phi_{\rm tram}^{\rm tram}$ delay distribution	UNIF(0 s,40 s)
Φ_{11}^{tram} , Φ_{2}^{tram} crossing time distribution	UNIF(6 s, 14 s)


⁴ Stochastic state classes method implemented in the SIRIO library: https://www.oris-tool.org/sirio

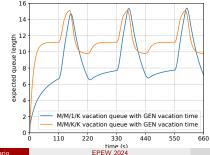
Macroscopic models of car traffic (alternative models)

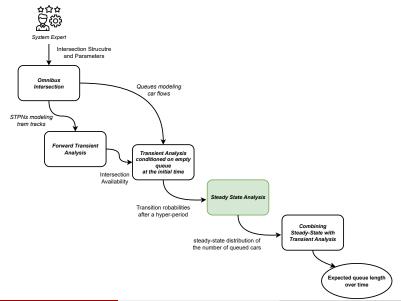

- $\bullet~M/M$ finite-capacity queue with GEN vacation time
- Vacation time: intersection not available due to tram passage or red signal
- $R_{k,j}(t)$:=Prob{j queued cars at $t \mid k$ queued cars at the initial time}
- β(t):=Prob{intersection available at t and car semaphore green at t}
- $\bullet~M/M/1/{\it K}$ queue: the intersection is the server

• Arrival rate λ , service rate $\mu \, \beta(t)$

 $\bullet~M/M/{\it K}/{\it K}$ queue: the street preceding the intersection is the server

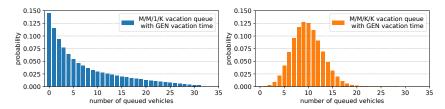
• Arrival rate λ , service rate $k \, \mu \, \beta(t)$ in state k

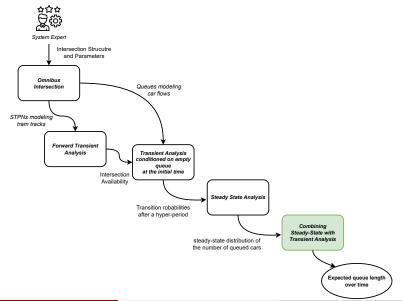

Car Flow Analysis Omnibus


Transient evaluation

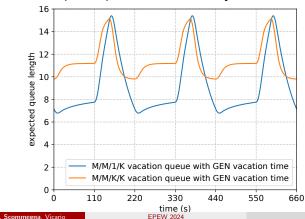
- Numerical solution of the system of differential equation by discretization
- Expected number of queued cars: $\bar{Q}(t) = \sum_{k=1}^{N} \operatorname{Prob}\{k \text{ initial queued cars}\} \sum_{k=1}^{N} j R_{k,j}(t)$
- An intersection with a car flow and a tram line made of two tracks
 - Queue size K = 31 (street length 150 m, car length 4.5 m, safe distance 0.3 m)

 - Arrival rate $\lambda = 0.9 \text{ s}^{-1}$ (both M/M/1/K and M/M/K/K) Leaving rate $\mu = 1.138 \text{ s}^{-1}$ (M/M/1/K), $\mu = 0.092 \text{ s}^{-1}$ (M/M/K/K) (intersection length 12.2 m, car speed 50 km h⁻¹)


1 // Car Flow transient analysis 2 double [] expectedState = carFlow.analyzeQueue(new TransientAnalyzer(), BigInteger.valueOf(carFlow.getObstaclesHvperPeriod()), timeStep).getExpectedStateAlongTime()):



Steady-state evaluation


- Steady-state distribution of the number of queued cars at multiples of the hyper-period (i.e. l.c.m. of tram and car semaphore periods)
- Derivation of the embedded DTMC by transient analysis of queue behavior within an hyperperiod
- The embedded DTMC is irreducible, aperiodic, and positive recurrent

Combining Steady-state and Transient Analysis

- **Steady state analysis**: steady-state distribution of the number of queued cars at multiples of the hyper-period
- Transient analysis conditioned on the steady-state distribution of the number of queued cars at the initial time

• Evaluation of the expected queue size over arbitrary-duration intervals

Validation

Validation wrt a microscopic traffic simulator

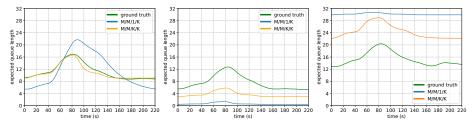
- An intersection with a bidirectional tram line and a single-lane car flow
 - Street length $S \in \{50, 150, 450\}$ m (determines the maximum queue size K)
 - Car arrival rate $\lambda \in \{0.5, 0.9, 1.3\}$ s⁻¹
 - Maximum car speed $V \in \{30, 50, 70\}$ km h⁻¹ (determines the leaving rate μ)
 - Tram period $T = 220 \,\text{s}$, phase 0 s for track1 and 40 s for track2
 - UNIF delay over [0, 120] s for track1 and [0, 40] s for track2

Ground truth obtained by SUMO (Simulation of Urban MObility)

- 1500 runs for each of the 27 scenarios
- Total execution time $\simeq 11$ days
- Expected queue size over time computed by analysis $(\bar{Q}_A(t))$ and simulation $(\bar{Q}_S(t))$: Normalized Root Mean Square Deviation

$$\operatorname{NRMSD}(A, S) := \sqrt{\frac{\displaystyle\sum_{t=0}^{N-1} (\bar{Q}_{\mathrm{A}}(t) - \bar{Q}_{\mathrm{S}}(t))^2}{N}} \cdot \frac{1}{K}$$

Results:


- $\bullet\,$ In the worst case, NRMSD < 0.37 achieved in $< 2.7\,s$
- $\bullet~>$ 80% of the cases, NRMSD < 0.2; \simeq 50% of the cases, NRMSD < 0.1
- Simulation takes tens of seconds to achieve comparable NRMSD

Validation

Validation results

• Expected number of queued cars over time

• $S = 150 \text{ m}, \lambda = 1.3 \text{ s}^{-1}, V = 70 \text{ km h}^{-1}$ (best case for the M/M/K/K model) • $S = 150 \text{ m}, \lambda = 0.5 \text{ s}^{-1}, V = 70 \text{ km h}^{-1}$ (lower arrival rate wrt the best case) • $S = 150 \text{ m}, \lambda = 1.3 \text{ s}^{-1}, V = 30 \text{ km h}^{-1}$ (lower car speed wrt the best case)

- Analysis with the M/M/K/K queue reproduces the ground truth pattern capturing peaks and troughs of the expected number of queued vehicles
- The analysis is able to **capture relative variations** as the values of parameters change

Omnibus Beyond Intersection Analysis

- Omnibus provides a significantly lower computational load wrt microscopic simulators
- Omnibus analysis accurately captures the car flow patterns
- Idea: Exploit Omnibus to find parameters that optimize quantitative measures of interest
- Example: Derivation of optimal signal schedules⁵
 - Identification of a state space of 390 possible signal schedule
 - Evaluation of the impact of each signal schedule with both SUMO and Omnibus
 - SUMO requires over 94 hours to explore the overall state space
 - $\, \bullet \,$ Omnibus requires $\approx 38 \, {\rm s}$ to explore the overall state space
 - The overall SUMO schedule ranking is comparable to the omnibus schedule ranking
 - The two best schedules derived by our analysis method are the 1-st and the 4-th in the SUMO ranking
 - 7 of the best 10 schedules according to Omnibus are in the best 10 positions in the SUMO ranking

⁵Bertocci, Carnevali, Scommegna, Vicario. Efficient derivation of optimal signal schedules for multimodal intersections. SIMPAT 2024

Discussion and Future Directions

- An approach to performance evaluation of multimodal urban intersections
- The approach performs both transient and steady-state analyses
 - Enables evaluation with time-varying params over arbitrary-duration intervals
- Validation wrt the results obtained through the SUMO traffic simulator
 - $\, \bullet \,$ In the worst case, NRMSD < 0.37 achieved in $< 2.7 \, s$
 - $\bullet\,$ In more than 80% of the cases, NRMSD < 0.2
 - In nearly 50% of the cases, NRMSD < 0.1
 - Simulation takes tens of seconds to achieve comparable NRMSD
- The approach is open to many extensions
 - Joint evaluation of performance of multiple intersections
 - Bursts and platoons arrival through non-EXP inter-arrival times and service times
 - Evaluation of other quantitative measures of interest