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Abstract—Cloud-based systems require the management of
large volumes of requests while maintaining specific levels of
availability and performance. Each service is thus replicated
into a pool of identical replicas. This allows for load distribution
among the pool of replicas and a greater degree of fault tolerance
compared to a single instance of the service that stands as
a single point of failure. The high availability and scalability
requirements, coupled with the phenomenon of software aging,
have made the replica-based approach pervasive in modern online
services. In such configurations, the unavailability of a single
replica, due to scheduled maintenance or unexpected failures,
does not imply the unavailability of the whole system but rather
an increase in the load of the remaining replicas. This identifies a
performability problem in which the system can tolerate a certain
number of offline replicas in the pool. However, once a certain
threshold is exceeded, the resulting high workload pending on
the online replicas could degrade the performance of the system,
potentially leading to a failure in meeting the non-functional
requirements.

In this work, we study the problem of aging in a pool of
service replicas. We characterize two inspection-based rejuvena-
tion strategies that could be implemented in this context, which
we identify as uncoordinated and coordinated rejuvenation. We
represent them through the formalism of Stochastic Time Petri
Nets (STPN) and through steady-state analysis, we conduct a
performability evaluation of both the models as the frequency of
inspections and the pool size vary.

Index Terms—Software aging, Software rejuvenation, Cloud-
based systems, stochastic time Petri nets.

I. INTRODUCTION

Nowadays, many web applications and online services need
to handle a significant number of simultaneous requests and
contemporarily provide scalability and highly available ser-
vices [1]. To manage these requirements, it is considered best
practice to use multiple replicas of the same service [2], [3].

This work was partially supported by the European Union under the
Italian National Recovery and Resilience Plan (NRRP) of NextGenerationEU,
partnership on “Telecommunications of the Future” (PE0000001 - program
“RESTART”).

As a first advantage, having multiple replicas enhances the
service availability [4]. If one replica fails or goes offline
for any reason, the other replicas can continue to handle
requests, thereby ensuring service continuity. Moreover, the
use of multiple replicas enhances the maintainability and
flexibility of the system. In fact, a gradual increase of active
users can be effectively managed by incrementing the number
of replicas. This allows for the development of systems that
can smoothly evolve over time, allocating and consuming
resources proportionally to the workload expected for the near
future, without the need for long-term resource provisioning.

In principle, this replica-based strategy could be imple-
mented manually. This requires manual management of the
number of replicas to instantiate, the implementation of an
appropriate horizontal scaling strategy, and the implementa-
tion of a load balancer capable of identifying the available
replicas and adequately distributing the workload. With the
advent of the virtualization era and the cloud-native application
paradigm, cloud providers like Google Cloud and Amazon
Web Services, and orchestration frameworks like Kubernetes
and Docker Swarm have emerged. These platforms offer native
support for replica-based strategies, which has greatly simpli-
fied the process of deploying and managing software systems
efficiently. This ease of use, combined with the inherent
benefits of replication for availability and maintainability, has
led to the widespread adoption of replication-based strategies
in the cloud computing landscape. In essence, the combination
of virtualization strategies, advanced cloud platforms, and
sophisticated orchestration tools has made replication not
just a viable, but a prevalent strategy for managing reliable,
available, and efficient services in the cloud.

As a downside, long-running systems are prone to software
aging [5], [6], and as such, also virtualized and cloud-based
systems are subject to this problem [7]–[11]. Software aging is
a phenomenon that, due to aging-related bugs (ARBs), affects
the system resources, gradually degrading its performance.
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As time passes, the state of degradation can increase until it
manifests an aging-related failure that can even cause a system
crash. Aging is often caused by the accumulation of errors due
to mandelbugs, which are ARBs that are difficult to replicate
and remove [12]. Consequently, it is a common practice to
implement runtime proactive strategies to counteract software
aging. Such strategies are commonly defined as software
rejuvenation and consist in the periodic preemptive rollback
of running applications with the aim to prevent, or at least
postpone, aging-related failures [7].

In virtualized and cloud-based systems, the problem of
software aging and the strategies of rejuvenation are condi-
tioned by various additional factors. On the one hand, software
aging is amplified due to the various middleware components
involved, which could contribute to system aging [7], [10].
For instance, Operating Systems, Hypervisors, and Virtual
Machine Monitors (VMMs) can be susceptible to software
aging [13], [14]. Similarly, orchestrators can also be subject
to this phenomenon [15], [16]. On the other hand, the use
of replica-based strategies makes the system as a whole more
robust to the downtime of a single replica either due to crashes
or rejuvenation actions. In this scenario, it becomes crucial
to implement software rejuvenation strategies that take into
account the current technological context and the replica-based
strategies that are now employed pervasively.

Many previous works address the problem of aging in
a cloud computing environment [10], [17]–[19] and many
others analyze virtualized systems [11], [20]–[22]. Popular
rejuvenation techniques, both measurement-based and model-
based [7], primarily focus on studying the aging phenomenon
limited to a single instance of a service [10], [23], [24].
However, some specific works address rejuvenation in virtual
systems with various degrees of granularity considering warm
or cold virtual machine replicas or passive or active VM
failover [7], [11], [25], [26]. There are also works where
the case of a pool of active replicas is considered, both
through the concrete implementation of rejuvenation strategies
on real systems [27], and through the analysis and quantitative
evaluation of models [28]–[30]. However, to the best of our
knowledge, no work in the literature proposes a model capable
of representing and analyzing an inspection-based rejuvenation
strategy.

In this work, we study how software rejuvenation strategies
impact a pool of service replicas subject to software aging.
Specifically, we quantitatively evaluate reliability and unavail-
ability metrics of the replicas to estimate how specific pool
configurations and inspection-based strategies can impact the
performability of the entire pool. To do this, we characterize
two rejuvenation strategies that can be implemented within
a pool of service replicas, utilizing the most widely used
orchestration frameworks. The first strategy, which we refer
to as uncoordinated rejuvenation, involves an independent in-
spection and rejuvenation process for each replica. The second
strategy instead, termed coordinated rejuvenation, involves a
pool-wise orchestrated inspection and rejuvenation process.
Finally, the two identified strategies are represented with two

Stochastic Time Petri Nets (STPN) [31] underlying a Markov
Regenerative Process (MRP) [32]. The numerical solution is
performed using the method of stochastic state classes [33], as
implemented in the SIRIO library [34] of the ORIS tool [31].

A complete replication package of the study is made pub-
licly available1 This includes: i) the STPN Oris models, ii)
The Java project that utilizes the SIRIO Library, iii) the raw
data collected from the experiments, and iv) the corresponding
plots.

The rest of the paper is organized as follows. In Section II,
we describe the system model considered and we define
the technological context in which we place our work. In
Section III, we outline two alternative rejuvenation strategies,
providing an STPN model for each. In Section IV, we identify
the features of interest for replica-based systems and we ana-
lyze and compare the results obtained with the two strategies.
Finally, in Section V, we draw the conclusions.

Load
Balancer

Pool of Service Replicas

Fig. 1: Graphical representation of the considered system
model.

II. SYSTEM MODEL

In this section, we identify the system model assumed in
this work. As depicted in Figure 1, we consider a pool of
service replicas. Service replicas could be hosted within the
same machine in the form of virtualized services, such as
virtual machines or containerized services. Equivalently they
could be hosted on separate machines within the same cluster
in the form of non-virtualized services.

We assume the presence of a load balancer [35]. The
primary responsibility of this component is to evenly distribute
the workload among all the replicas. Furthermore, the load
balancer also identifies which replicas are still active and
which ones have failed. In case of failed replicas, it activates
the repairing process and redirects requests to the available
replicas. This type of setup is standard in many enterprise
infrastructures and can be replicated either manually, provided
natively by cloud providers such as Google Cloud or Amazon
Web Services, or by orchestration frameworks like Kubernetes
or Docker Swarm.

Software aging is a phenomenon impacting long-lasting
software systems, both virtualized and non-virtualized. Fur-
thermore, the workload that the subject handles influences

1https://doi.org/10.5281/zenodo.13370985
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significantly this process [7], [18]. In our system model,
replicas of the same service type, belonging to the same
pool, experience analogous loads thanks to the load balancer.
Consequently, we can assume that the impact of aging on
these replicas occurs concurrently and follows the same aging
pattern. Note that this indicates only an average aging trend
for each replica and does not imply synchronized degradation
or failures. While this assumption appears reasonable, aging
may also be influenced by other additional factors, therefore,
we regard this assumption as a potential threat to validity.

In order to mitigate the effects of software aging, a va-
riety of software rejuvenation strategies are utilized. One
such widely adopted strategy, particularly within virtualized
environments, is known as inspection-based rejuvenation. This
strategy entails conducting regular inspections of the system
replica to determine if rejuvenation should be applied. The
aging assessment of each inspection relies on the analysis of
specific resource usage metrics, known as aging indicators,
that can act as a proxy measure of the aging of a system [7].
Monitoring of the aging indicators helps to estimate the aging
state of the system while maintaining low overhead. However,
these metrics can occasionally be misleading, resulting in
misclassification [7], [24]. Thus, a certain degree of sensitivity
and specificity should be considered for each inspection.

The outlined scenario identifies a system designed to main-
tain high availability even in the presence of failures. However,
although redundancy allows the service to remain accessible
even in case of multiple failures that occur close together in
time, load rebalancing and the consequent drop in performance
could lead to a violation of the non-functional requirements.
This identifies a system performability problem where the
performance of the system and its dependability are studied
together. However, even if a failure does not imply the
unavailability of the system, it corresponds to the unplanned
interruption of a replica. Therefore, a failure identifies a
potential interruption of a response that was being processed
by the failed replica, causing a tangible disservice to the end
user.

In this context, it is crucial to study the behavior of the
system as the number of replicas in the pool (the pool size) and
the frequency of inspections vary. The metrics of interest that
we identify for this work are reliability, performability, and
unavailability due to rejuvenation. Specifically, by reliability,
we refer to the probability of a replica experiencing a failure.
Performability involves the probability of having a certain
number n of unavailable replicas, either due to failure or
because they are in rejuvenation. Where n represents the
threshold within which the QoS requirements are no longer
guaranteed. Finally, we are interested to the unavailability due
to rejuvenation, since it allows us to evaluate the impact of
the rejuvenation practice on performability.

III. INSPECTION-BASED REJUVENATION IN POOLS OF
SERVICE REPLICAS

In this section, we characterize two inspection-based re-
juvenation strategies and their corresponding models in the

form of STPNs. In Section III-A, we report a strategy that we
define as uncoordinated rejuvenation, in which each replica
is analyzed independently of the others. In Section III-B,
instead, we present a coordinated strategy that consists of
periodically identifying the most aged replicas within the pool
and rejuvenating them sequentially.

Fig. 2: Model of uncoordinated rejuvenation of a pool of
service replicas.

A. Uncoordinated Replicas Rejuvenation

The most direct and natural way to implement inspection-
based rejuvenation in practice is to implement an independent
rejuvenation strategy for each replica. Each replica is thus
periodically analyzed and rejuvenated if deemed necessary,
without considering the overall state of the pool to which
it belongs. We classify this type of rejuvenation strategy as
uncoordinated rejuvenation.

Orchestration frameworks natively support system monitor-
ing practices through probing. For instance, the Liveliness
Probe2 in Kubernetes enables periodic inspection of the in-
ternal state of a pod, which is equivalent to a service replica.
Through criteria defined programmatically by the developer,
the liveliness probe can automatically trigger the reboot of the
pod. Thus, Kubernetes allows for the effortless implementation
of inspection-based rejuvenation strategies and in particular
offers a built-in mechanism for uncoordinated rejuvenation.

As in the well-known work of Garg et al. [36], we consider
a two-step failure process to represent the aging of a single
replica. Based on this, we extend the model in the form of an
STPN, to describe the concurrent progress of multiple replicas
in an uncoordinated rejuvenation configuration. The resulting
model is represented in Figure 2. On the left side of the
network (blue section), similar to Garg et al., we describe
the system aging, failure, and repair process. Conversely, on
the right side (green section), we model the mechanism of
inspection-based rejuvenation. Each token in the left-hand

2https://kubernetes.io/docs/concepts/configuration/
liveness-readiness-startup-probes/ Accessed July 27, 2024
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section represents a service replica of the pool. Initially, all
replicas are in a safe state, marked as Ok. In the specific
representation of Figure 2 then, we are assuming a pool size
equal to 8. As ARBs accumulate over time, replicas will
progressively shift into a compromised state, denoted as Err.
If the process persists, they will ultimately reach a failure state,
indicated as Ko. After a failure occurs, the replica undergoes
an unplanned repair process, which restores it back to a safe
state.

Concurrently, each replica undergoes periodic inspection,
regardless of whether it is in a safe state or in a deteriorated
state. We represent the inspection from a safe space with
the RejOkChoice place and conversely, we denote the
inspection from a deteriorated state with the RejErrChoice.
During the inspection, the replica could be classified as aged
and subsequently rejuvenated, transitioning to the RejPool
place, or it could be classified as safe and maintained available
until the next inspection. This mechanism inherently allows
for the potential misclassification of the aging state of a
replica, leading to false positives (represented by the rejOk
transition) and false negatives (represented by the noRejErr
transition).

The values of the exponential distributions have been as-
signed so that the aging, failure, repair, and rejuvenation
times of a single replica fit the expected values identified by
Garg et al. [36]. For convenience, these values are reported
in Table I. A peculiar feature of the scenario considered is
that, unlike in the original model, each replica experiences
an independent aging and monitoring process. Thus, the ex-
ponential distribution rate is here defined as proportional to
the number of tokens (replicas) present in the place that acts
as a precondition for the associated transition. In the STPN
formalism, this is implemented by assigning to the transitions
the rate assumed for the single replica multiplied by the name
of the precondition place (e.g., 0.004166*Ok for the err
transition). Moreover, the original model by Garg et al., out-
lined a time-triggered strategy where the system is periodically
rejuvenated. In contrast, this model uses rejOkTrigger
and rejErrTrigger to define the frequency at which each
replica is inspected.

Transition Expected Value
(hours)

rejPool/rej 0.1666
err 240
fail 2160
repair 0.5

TABLE I: Expected values of timers used in the MRGP under
enabling restriction of [36]. Stochastic parameters of timers
in Figure 2 and Figure 3 were selected to obtain the same
expected values.

We assume that each inspection may misclassify the state
of a replica with a certain sensitivity and specificity. In
particular, the model proposed allows the characterization of

specificity for each inspection through a probabilistic switch
represented by the RejErrChoice place and the concurrent
transitions rejErr and noRejErr. These transitions encode
true positive and false negative classifications, respectively.
Similarly, the sensitivity is represented by the probabilistic
switch composed by the RejOkChoice place and the con-
current transitions rejOk and noRejOk. These other two
transitions encode false positive and true negative classifi-
cations, respectively. For our model, we have assumed a
probabilistic weight of 0.1 for the transitions rejOk and
noRejErr, and a probabilistic weight of 0.9 for rejErr
and noRejOk resulting in a sensitivity and specificity of 0.9
for each inspection.

Fig. 3: Model of coordinated rejuvenation of a pool of service
replicas.

B. Coordinated Replicas Rejuvenation

The probing and monitoring technologies offered by the
orchestration frameworks mentioned in Section III-A could be
used to implement more complex rejuvenation mechanisms.
With uncoordinated rejuvenation (Section III-A), each replica
is subject to independent inspection mechanisms and rejuvena-
tion actions. However, this strategy could cause simultaneous
rejuvenation of multiple replicas with consequent drops in
system performance. In addition, as already mentioned, in-
spections aimed at identifying software aging in a replica are
prone to classification errors.

We therefore propose a centralized inspection strategy that
is aware of the overall state of the pool. Knowing the
state of the other replicas allows for the implementation of
mechanisms that prevent the phenomenon of simultaneous
rejuvenation. Furthermore, it enables the comparison of aging
metrics among the various replicas, suggesting a rejuvenation
scheduling of the replicas and reducing the possibility of
misclassification. In contrast with the uncoordinated policy
outlined in Section III-A, we classify this type of rejuvenation
strategy as coordinated rejuvenation.

Figure 3 shows the model for coordinated rejuvenation in
the form of STPN. To represent the strategy of coordinated
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rejuvenation on a pool of replicas, we maintain the same
representation of the aging, failure, and repair processes used
for uncoordinated rejuvenation (the blue section), while we
completely change the part for the rejuvenation mechanism
(the green section).

Unlike uncoordinated rejuvenation, this strategy implies a
periodic inspection performed pool-wise. This behavior is then
represented in the model through the WaitTrigger place
and the deterministic transition trigger. Periodically, with
a period identified by trigger, the inspection is performed.
The choice whether to start rejuvenation actions or not depends
not only on the state of a single replica but rather on the
state of all the active replicas of the pool. In practice, this
consists of evaluating the aging state of each individual replica
and consequently choosing whether to rejuvenate one or more
replicas or postpone to the next inspection. We represent this
choice with the probabilistic switch in the place RejChoice
with the immediate transitions rejChosen and noRej.

When the rejuvenation action is chosen, the rejChoice
transition fires, placing a token in the Triggered place.
Similar to the uncoordinated policy, this model also consider
possible misclassification of replicas. In this model, the sensi-
tivity and specificity is represented by the probabilistic switch
with the rejOk and rejErr transitions in combination with
the probabilistic switch of RejChoice.

Once the replica to rejuvenate is extracted, the correspond-
ing token is moved to the Rej place and the rejuvenation
time is modeled by the rejuvenate transition. Upon completion
of rejuvenation, the replica is reinserted into the pool in
the Ok place. With coordinated rejuvenation however, it is
not mandatory to wait for a new rejuvenation period to
perform another rejuvenation. In fact, another token is placed
in RejChoice where the decision on whether to perform an
additional rejuvenation or not is repeated. This last behavior
encodes the possibility of performing an indefinite number
of rejuvenations at each rejuvenation period, albeit forced
to be sequential. Therefore, it can be said that coordinated
rejuvenation implicitly models periodical burst rejuvenations
with a sequential schedule.

As in the previous model, the values of the distributions
were chosen in order to fit the expected values of Table I.
However, some noteworthy differences deserve to be men-
tioned. The decision on whether to initiate a rejuvenation
or not should depend on how many replicas are in a safe
or in an aging state. This is concretely expressed through
the assignment of probabilistic weights on the rejChosen
and noRej transitions. In particular, the following formula
ϵ1+λ∗Err is used for rejChosen and ϵ2+Ok for noRej.

With these weights, the greater the number of aged replicas
(number of tokens in Err), the higher the probability with
which the system will choose to perform rejuvenation actions.
Furthermore, there is a residual possibility ϵ1 of performing
rejuvenation even without any replica in aging state, thus
implementing the possibility of committing false positives
for the inspection method. Similarly, ϵ2, encodes the residual
possibility that no rejuvenation is performed even when all the

replicas are in aging state, thus committing a false negative
classification. For the experiments, we have chosen to set
ϵ1 = ϵ2 = 0.3.

One of the key features of coordinated rejuvenation is the
ability to choose a replica to rejuvenate by comparing it with
the other active replicas. This process is implemented through
the definition of weights in the probabilistic switch formed by
the rejOk and rejErr transitions. We identify with p the
probability that in a single comparison between an aged replica
and a healthy one, the wrong replica is erroneously chosen
for rejuvenation. Then, the probability of making a mistake in
identifying an aged replica through the comparison of all the
replicas in the pool is equal to k ∗ pm, where k is the number
of aged replicas and m is the number of healthy replicas. In
fact, to select a healthy replica for rejuvenation the system
should make m mistakes in the comparison with the healthy
replicas for each of the k replicas in aging state. Therefore,
the probabilistic weight of rejOk is equal to Err∗pOk, while
for rejErr it will be 1−Err∗pOk. For the experiments, we
have assumed p = 0.1.

As a final remark, the rejuvenate timer is modeled
with a truncated exponential distribution with density f(x) =
4.28 exp(−3.17x) over [0, 0.43] keeping the fit with the ex-
pected value in the Table I.

IV. ANALYSIS AND RESULTS

To evaluate the two strategies identified in Section III, we
analyze the associated STPN models. In particular, we define
three rewards, one for each metric of interest identified in
Section II, i) unreliability, ii) unavailability due to rejuvena-
tion, and iii) performability. Once identified the rewards, we
evaluated how the inspection frequency and the number of
replicas affect the metrics of interest at the steady state. The
models were developed and validated using the Oris Tool.
The execution of the experiments, in which the steady-state
rewards were evaluated by varying the parameters of interest,
was performed using the SIRIO Library.

Starting from the model of uncoordinated rejuvenation of
Figure 2, we denote the unreliability with the reward Ko and
the unavailability due to rejuvenation as rejPool. In terms of
performability, we assume that the system fails to meet its QoS
requirements when n or more replicas are offline. Thus, we de-
fine the performability metric as Ko+RejPool≥n. Regarding
the coordinated rejuvenation strategy of Figure 3, equivalently
to the scenario of uncoordinated rejuvenation, reliability is
characterized by the reward Ko. Instead, the unavailability
due to rejuvenation is denoted by the reward Rej, and as
a result, the performability is expressed as Ko+Rej≥n. Note
that although the rewards chosen to measure unreliability also
imply unavailability due to non-rejuvenation causes, the main
purpose of the rewards is to measure the replica failures
occurring in the system.

For our experiments, we evaluated the rewards defined
by varying the inspection period of the strategy and the
pool size. Regarding the inspection period, we evaluate the
behavior of the two strategies by ranging from 5 to 5000
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(a) Pool size=1 and n=0
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(b) Pool size=2 and n=1
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(c) Pool size=4 and n=2
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(d) Pool size=8 and n=3

Fig. 4: Steady-state unreliability, unavailability due to rejuvenation and performability metric (Ko+RejPool≥n) as a function
of the inspection period for the model in Figure 2 (uncoordinated rejuvenation).

hours, incrementing by 5 hours. To ensure the comparability
of the analysis results, for uncoordinated rejuvenation, we
vary the average inspection time for each individual replica.
For coordinated rejuvenation, instead, we vary the pool-wise
inspection period i.e., the value of the deterministic transition
trigger.

In terms of the pool size, we analyze the two strategies
varying the number of replicas with the following values 8, 4,
2, 1. Note that the case with the single replica degenerates into
a system without redundancy. For each of these pool sizes, we
assume different performability threshold n. In particular, for a
pool size of 8, we assume a maximum number of unavailable
replicas n of 3; for a pool size of 4 we assume n=2; for a pool
size of 2, n=1; and finally for a pool size of 1, we assume
n=0.

After analyzing all combinations of pool size and inspection
period, we report the results, which are depicted in Figure 4
regarding the STPN model of uncoordinated rejuvenation, and
in Figure 5 regarding the model of coordinated rejuvenation.

Note that, the aim of this experimentation is to provide insights
into the behavior of the system as the rejuvenation strategy and
parameters vary. Nonetheless, it also assists system experts in
consciously configuring the rejuvenation strategy, taking both
reliability and performability into account.

The results show that certain patterns are common across
both the rejuvenation strategies. High inspection frequencies
(low values of inspection trigger) are associated with lower
unreliability levels but also correspond to higher levels of
unavailability due to rejuvenation. This, in fact, is consistent
with the underlying logic of both rejuvenation strategies. Fre-
quent inspections over time reduce the likelihood of the aging
of a replica going undiagnosed before the failure, thereby
enhancing resilience against false negatives. Conversely, this
also increases the chance of erroneously identifying a healthy
replica as aged, thereby simultaneously increasing the propen-
sity for false positives.

Maintaining the same inspection period, a larger pool size
results in higher values of unreliability and unavailability due
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(b) Pool size=2 and n=1
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(c) Pool size=4 and n=2
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(d) Pool size=8 and n=3

Fig. 5: Steady-state unreliability, unavailability due to rejuvenation and performability metric (Ko+RejPool≥n) as a function
of the inspection period for the model in Figure 3 (coordinated rejuvenation).

to rejuvenation (except for the single replica case). This result
is not surprising as the more replicas there are, the greater the
chance that a replica will need to be rejuvenated or fail. On the
contrary, the performability metric remains very low for pool
sizes above 2, where we consider the maximum acceptable
number of offline replicas to be n=2 for a pool size of 4, and
n=3 for a pool size of 8. In light of this, the results suggest
that as the pool size increases, it is advisable to increase
the frequency of inspection. This will lead to an increase in
the unavailability due to rejuvenation, but it will preserve the
required QoS.

Regarding the differences between uncoordinated and co-
ordinated rejuvenation strategies, with equal pool size and
inspection period, the coordinated strategy generally offers
better performance, which becomes even more pronounced as
the pool size increases. These results are due to the intrinsic
mechanisms of the coordinated rejuvenation strategy. Firstly, a
replica selection policy for rejuvenation based on comparison
with other replicas improves the detection mechanism. In fact,

the more replicas are in an aged state, the more likely it is
that one of these replicas will be chosen, thus reducing false
positives and false negatives. Furthermore, the coordinated
rejuvenation model prevents, by design, the simultaneous reju-
venation of multiple replicas, contributing to the performance
of the system.

V. CONCLUSIONS

We addressed the problem of software aging in a pool
of service replicas by characterizing two realistic inspection-
based software rejuvenation strategies, named uncoordinated
and coordinated rejuvenation respectively. Using Oris Tool
and Sirio Library, we outlined a process of software aging
in the pool of service replicas from which we defined two
STPN models capable of representing the operation of both
rejuvenation strategies. On top of this, we outlined how the
unavailability of a single replica does not imply the complete
unavailability of the service provided by the pool but rather
underlies a performability problem. We then defined three
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metrics to evaluate the models: performability, reliability, and
unavailability due to rejuvenation. Exploiting the Sirio Library,
we conducted a quantitative evaluation of the models to study
how the system behaves at steady state as the inspection period
and pool size vary. The obtained results are consistent with
the mechanism of software aging and rejuvenation outlined
and offer interesting insights into the operation of both strate-
gies, also highlighting better performance for the coordinated
rejuvenation strategy.

Validation of the proposed models is currently under devel-
opment. Once validated, this work will pave the way for other
possible extensions. For instance, it could be interesting to
study how these strategies behave with more unstable systems
than the one presented by Garg et al. [36], with signifi-
cantly shorter aging and failure times. Alternative rejuvenation
policies could be explored, such as allowing the parallel
rejuvenation of a specified maximum number of replicas.
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