
A Markov Regenerative Model of Software
Rejuvenation Beyond the Enabling Restriction

Laura Carnevali
Dept. of Information Engineering

University of Florence
Florence, Italy

laura.carnevali@unifi.it

Marco Paolieri
Dept. of Computer Science

University of Southern California
Los Angeles, USA

paolieri@usc.edu

Riccardo Reali
Dept. of Information Engineering

University of Florence
Florence, Italy

riccardo.reali@unifi.it

Leonardo Scommegna
Dept. of Information Engineering

University of Florence
Florence, Italy

leonardo.scommegna@unifi.it

Enrico Vicario
Dept. of Information Engineering

University of Florence
Florence, Italy

enrico.vicario@unifi.it

Abstract—Software rejuvenation is a proactive maintenance
technique that counteracts software aging by restarting a system
or some of its components. We present a non-Markovian model
of software rejuvenation where the underlying stochastic process
is a Markov Regenerative Process (MRGP) beyond the enabling
restriction, i.e., beyond the restriction of having at most one
general (GEN, i.e., non-exponential) timer enabled in each state.
The use of multiple concurrent GEN timers allows more accurate
fitting of duration distributions from observed statistics (e.g.,
mean and variance), as well as better model expressiveness,
enabling the formulation of mixed rejuvenation strategies that
combine time-triggered and event-triggered rejuvenation. We
leverage the functions for regenerative analysis based on stochas-
tic state classes of the ORIS tool (through its SIRIO library) to
evaluate this class of models and to select the rejuvenation period
achieving an optimal tradeoff between two steady-state metrics,
availability and undetected failure probability. We also show that,
when GEN timers are replaced by exponential timers with the
same mean (to satisfy enabling restriction), transient and steady-
state are affected, resulting in inaccurate rejuvenation policies.

Index Terms—Software rejuvenation, Markov regenerative
processes, enabling restriction, bounded regeneration restriction,
stochastic state classes, stochastic time Petri nets.

I. INTRODUCTION

Software aging increases the failure rate and reduces the

performance of software systems [1]–[7] due to Aging-Related
Bugs (ARBs). This class of software faults manifests its

effects over time, affecting different types of software systems

including cloud infrastructures, operating systems, database

management systems, web servers, and web applications [1],

[2], [5], [8], [9]. As time passes and service requests are

completed, ARBs can be activated and propagate, resulting

in a chain of threats [10] that lead the system towards error

states with increasing failure probability, until an aging-related

failure occurs (e.g., a process crash due to memory allocation

failure caused by a memory leak that progressively reduced

available resources).

ARBs often manifest themselves as Mandelbugs [11], which

are hard to remove before deployment and operation due to

the limited increase of detection probability with respect to

testing efforts, and which are often hidden in interactions

with the execution environment or with third-party integrated

libraries [2], [12]–[14]. To avoid or mitigate disruptive failures,

unnecessary resource consumption, and other aging effects, a

viable alternative to fault removal is represented by a pre-

ventive and proactive maintenance technique termed software
rejuvenation, which, in its basic form, consists in repeatedly

stopping the system or some selected system component,

cleaning its internal state, and restarting it [15]. This approach

improves system reliability by mitigating error accumulation

and propagation, but it normally reduces availability due to

downtimes for cleaning the system state. The selection of re-

juvenation times thus subtends a crucial trade-off between soft-

ware qualities of reliability and performance efficiency [16].

A large variety of quantitative models of Software Aging

and Rejuvenation (SAR) have been proposed to derive an

optimal rejuvenation schedule, for different types of software

systems and rejuvenation strategies, resulting in different

classes of underlying stochastic process [17].

In several SAR models, the system behavior is abstracted as

a Continuous Time Markov Chain (CTMC), either defined by

direct identification of states [15], [18] or specified through

a high level modeling formalism [19], often in the class of

Stochastic Petri Nets.

Models in the class of Semi Markov Processes (SMPs)

[20] have been proposed to improve validity by representing

behaviors where the future evolution depends not only on the

current logical state (as in a CTMC) but also on the time spent

in the state. These models are usually expressed by direct iden-

tification of a set of states, with sojourn durations associated

with general (GEN, i.e., non-exponential) distributions fitting

experimental data [21]–[25].

Expressive power is further improved by models identifying

138

2022 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)

978-1-6654-7679-9/22/$31.00 ©2022 IEEE
DOI 10.1109/ISSREW55968.2022.00060

20
22

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
So

ft
w

ar
e

Re
lia

bi
lit

y
En

gi
ne

er
in

g
W

or
ks

ho
ps

 (I
SS

RE
W

) |
 9

78
-1

-6
65

4-
76

79
-9

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IS
SR

EW
55

96
8.

20
22

.0
00

60

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on March 11,2024 at 18:52:22 UTC from IEEE Xplore. Restrictions apply.

an underlying Markov Regenerative Process (MRGP, often

abbreviated as MRP) [20]. While SMPs impose that the

model satisfies the Markov condition (clearing memory of

the past history) at each transition, MRGPs only require the

Markov condition to be eventually satisfied with probability 1

at some time called regeneration point. The evolution of

the process can be represented through behaviors where the

system depends only on the history accumulated since the

last regeneration point. In models of SAR, this expressiveness

becomes crucial to represent aging phases during the interval

between subsequent rejuvenations, as in the seminal model

of [26] specified as a Markov Regenerative Stochastic Petri

Net (MRSPN), and in various subsequent works addressing

virtualized [12], [13] and clustered systems [27], [28]. As a

common trait, in all these models, the expressive power of

MRGPs is limited by the so-called enabling restriction, which

requires at most one GEN timer to be present in the model

(or in each state). Specifically, a deterministic (DET) transition

is used to represent the rejuvenation period, and exponential

(EXP) timers are used for all the remaining durations.

In this paper, we explore the potential of SAR models

that break the limit of the enabling restriction and permit

representation of concurrent timers with GEN distributions.

In this case, numerical solution can be performed using the

method of stochastic state classes [29] implemented in the

SIRIO library [30] of the ORIS tool [31]. This method

supports transient and steady-state analysis of models that

satisfy a so-called bounded regeneration restriction [32], re-

quiring that a regeneration is always reached within a bounded

number of discrete events, and that GEN durations are either

DET or expressed as Exponomial (often called Expolynomial)

distributions, with a possibly bounded support.

To this end, we extend the SAR model of [26] by using

exponomial GEN distributions with bounded support to fit the

mean values of repair and rejuvenation activities reported in

[26]. We show how the representation of durations with GEN

distributions impacts the evaluation of the optimal rejuvenation

period. We then show how the extended expressive power al-

lows us to analyze a model of rejuvenation policies combining

time-triggered and event-based strategies.

The rest of the paper is organized as follows. In Section II,

we present an MRGP model of software rejuvenation beyond

the enabling restriction, and we perform its analysis to de-

rive the optimal rejuvenation period. In Section III, analysis

results are compared with those obtained for a model variant

satisfying the enabling restriction. In Section IV, the expres-

sive power of models beyond enabling restriction is put to

work to combine time-triggered and event-based rejuvenation

strategies. Finally, we draw our conclusions in Section V.

II. OPTIMAL PERIODIC REJUVENATION

BEYOND ENABLING RESTRICTION

In this section, we extend a rejuvenation model from the

literature by using multiple concurrent GEN timers, which

result in an underlying stochastic process from a more general

Transition Expected Value (hours)

rejFromErr 0.1666

rejFromUp 0.1666

error 240

fail 2160

detect + repair 0.5

TABLE I: Expected values of timers used in the MRGP under

enabling restriction of [26]. Stochastic parameters of timers in

Fig. 1b are selected to obtain the same expected values.

class of MRGPs (Section II-A). Then, we show how the

ORIS tool can be used during system design to identify

the rejuvenation period that optimizes the trade-off between

metrics of reliability, which are evaluated as model rewards

(Section II-B).

A. Software aging and rejuvenation models

A well-known model of software aging and rejuvenation

was defined in [26]. In this work, we extend the structure of

such model to introduce a state where a failure has occurred

but has not been detected; the resulting model is presented

in Fig. 1a. The model is defined as an STPN describing the

system aging, failure, and repair process (blue section), and the

related rejuvenation process (green section). Initially, the sys-

tem is in a safe state (Up); due to ARBs, the system transitions

to an error state (Err), which eventually leads to a state of

failure (Down); then, the failure is detected (Detected) and

the system is repaired, returning to the safe state. Concurrently,

the rejuvenation process waits in the initial state (Clock)

for an amount of time equal to the rejuvenation period; after

this time, rejuvenation is ready to start (Rej): error or failure

events are inhibited, and rejuvenation is initiated in safe or er-

ror states of the system (through transitions rejFromUp and

rejFromErr, respectively). After rejuvenation, the system

goes back to a safe state and the rejuvenation process restarts.

In Fig. 1a, similarly to [26], the rejuvenation period is

modeled with a DET timer (gray bar) while all other activities

are modeled with EXP timers (white bars), so that the model

is under the enabling restriction. In this case, the transient

behavior of the system can be evaluated in closed form,

by inversion of the matrix form of the generalized Markov

renewal equations, where global and local kernels are derived

in the Laplace-Stieltjes domain. Transient probabilities of this

model can also be computed through regenerative transient

analysis based on the method of stochastic state classes [29],

[33]. This method removes the enabling restriction, allowing

the analysis of the model in Fig. 1b, where multiple GEN

timers (thick black bars) can be enabled concurrently. We

assign the following GEN distributions in Fig. 1b:

• error and fail are modeled with 4-phase Erlang

distributions fitting the expected values in Table I;

• detect is modeled with a uniform distribution over

[0, 0.3], with mean value 0.15;

139

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on March 11,2024 at 18:52:22 UTC from IEEE Xplore. Restrictions apply.

(a)

(b)

(c)

Fig. 1: Software aging and rejuvenation models: (a) extends

[26] to distinguish undetected failures and has an underlying

MRGP under the enabling restriction; (b) and (c) use multiple

GEN timers and have underlying MRGPs beyond the enabling

restriction; (b) has a periodic rejuvenation schedule, while

(c) introduces a diagnostic event-driven rejuvenation policy

discussed in Section IV.

• The other timers are modeled with truncated exponential

distributions, with density f(x) = 2.04 exp(−1.51x)
over [0, 0.90] for repair and f(x) = 4.28 exp(−3.17x)
over [0, 0.43] for rejFromErr and rejFromUp. The

upper bounds and rates of these distributions were se-

lected to fit the expected values in Table I and a coeffi-

cient of variation equal to 1/
√
2 [34]; repair has mean

value 0.35 to match the mean value of 0.5 used in Table I

for the sum of the duration of repair and detect.

0 2000 4000 6000 8000 10000

Rejuvenation Period p (hours)

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

0.00045

P
ro
b
ab
ili
ty

P(system unavailable)

P(undetected failure)

[P(system unavailable) + P(undetected failure)]/2

Fig. 2: Steady-state unavailability, undetected failure probabil-

ity, and their average as a function of the rejuvenation period

for the model in Fig. 1b (multiple GEN timers).

B. Optimal rejuvenation period

In the context of software aging and rejuvenation, steady-

state unavailability is a metric of interest quantifying the

occurrence of states in which the system is not able to provide

service. We consider an additional metric, the steady-state

probability of an undetected failure, which can be of particular

concern for system designers. Both metrics can be evaluated

using the ORIS GUI and the SIRIO library using the rewards
“If(Down+Detected>0||Rej>0,1,0)” and “Down”,

respectively. We are interested in selecting the rejuvenation

period p∗ that results in the best trade-off between steady-state

unavailability ā(p) and probability of undetected failure r̄(p).
Specifically, we minimize the average of the two metrics:

p∗ = argmin
p

[
ā(p) + r̄(p)

2

]
. (1)

The ORIS tool and the SIRIO library provide manual and

automated modeling capabilities, respectively; we use the

SIRIO library to evaluate [ā(p) + r̄(p)]/2 for 100 variants of

the model in Fig. 1b, with rejuvenation period p ranging from

500 to 10400 hours, with increments of 100 hours.

The results, presented in Fig. 2, show that, as expected, the

steady-state probability of an undetected failure r̄(p) increases

with the rejuvenation period p, converging to 0.000061. On

the other hand, the steady-state unavailability ā(p) initially

decreases with respect to the rejuvenation period p, reaching

the minimum value of 0.000163 for a period of 1600 hours,

and then increases, converging to the value 0.000205. The

rejuvenation period minimizing the average of these metrics

in Eq. (1) is p∗ = 1300, achieving the objective 0.000091.

C. Transient reliability metrics

After identifying the optimal rejuvenation period, we use

the ORIS tool to evaluate three transient metrics: unreliability,

unavailability, and cumulative unavailability. We evaluate

140

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on March 11,2024 at 18:52:22 UTC from IEEE Xplore. Restrictions apply.

0 10000 20000 30000 40000 50000

Time (hours)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
n
re
lia
b
ili
ty

(a)

0 2000 4000 6000 8000 10000

Time (hours)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
n
av
ai
la
b
ili
ty

(b)

0 2000 4000 6000 8000 10000

Time (hours)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

C
u
m
u
la
ti
ve
U
n
av
ai
la
b
ili
ty
(H
ou
rs
)

(c)

Fig. 3: Transient evaluation of (a) unreliability, (b) unavailabil-

ity, and (c) cumulative unavailability for the model in Fig. 1b.

the expected steady-state unreliability by using the reward

“Down” and the stop condition “Down==1” (i.e., the sys-

tem has encountered at least one failure); unavailability is

evaluated using the same reward used in the previous sec-

tion, “If(Down+Detected>0||Rej>0,1,0)”; cumula-

tive unavailability at time t is obtained in ORIS by integrating

the instantaneous unavailability in [0, t]. The results show that

system unreliability (Fig. 3a) converges to 1 after t = 50000
hours; at multiples of the rejuvenation period p = 1300, the in-

0 2000 4000 6000 8000 10000

Rejuvenation Period p (hours)

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

0.00045

P
ro
b
ab
ili
ty

P(system unavailable)

P(undetected failure)

[P(system unavailable) + P(undetected failure)]/2

Fig. 4: Steady-state unavailability, undetected failure probabil-

ity, and their average as a function of the rejuvenation period

for the model in Fig. 1a (under enabling restriction).

crease in unreliability is reduced, confirming the importance of

the rejuvenation processes. In contrast, unavailability (Fig. 3b)

shows sharp peaks near multiples of the rejuvenation period,

since the system is not available during rejuvenation; as time

advances, due to the randomness of repair times (after which

the rejuvenation clock is restarted), the unavailability peaks

are in fact distributed over longer periods of time, with lower

maximum probability values. Correspondingly, we observe

a sharp increase in the expected cumulative unavailability

(Fig. 3c) near multiples of the rejuvenation period; as time

advances, cumulative unavailability becomes smoother.

III. COMPARING ENABLING RESTRICTION WITH

BOUNDED REGENERATION RESTRICTION

In this section, we repeat the selection of an optimal

rejuvenation period presented in Section II-B for a model

under the enabling restriction (Section III-A). Then, we eval-

uate the impact of the enabling restriction on the transient

metrics presented in Section II-C, illustrating that transition

distributions greatly impact the choice of the rejuvenation

period, despite having the same mean values (Section III-B).

A. Optimal rejuvenation period

We repeat the analysis of Section II-B for the model pre-

sented in Fig. 1a, which includes a DET timer (waitClock)

for the rejuvenation period and only EXP timers (instead of

GEN timers) for the other activities, with rates that result in

the same expected values. The underlying stochastic process

is an MRGP under enabling restriction, since at most one non-

exponential timer can be enabled in each state.

The results, presented in Fig. 4, illustrate that the steady-

state values of both rewards have a monotonic trend, which is

decreasing for unavailability and increasing for the probability

of undetected failure. In this case, by applying again the

criterion of Eq. (1) to find the optimal rejuvenation period,

141

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on March 11,2024 at 18:52:22 UTC from IEEE Xplore. Restrictions apply.

the largest rejuvenation period is selected; similarly, after

extending the range used for the rejuvenation period, the

best strategy is to perform rejuvenation as rarely as possible,

suggesting that rejuvenation is not beneficial for the metrics

in Eq. (1). However, this is in contrast with the literature on

software aging and rejuvenation: in fact, the considered MRGP

model under enabling restriction is characterized by stochastic

parameters that, despite having the same mean values, are

not sufficiently accurate to identify an optimal rejuvenation

period. Since the model does not allow us to select an optimal

rejuvenation period, we select p∗ = 2200 in order to anticipate

the mean time of error detection (2300 hours) by a few hours.

B. Transient reliability metrics

We also investigate the impact on transient behavior when

GEN transitions are replaced in the model of Fig. 1b with EXP

transitions with the same mean values (model of Fig. 1a). To

this end, we analyze the two models for rejuvenation periods

equal to either p = 1300 or p = 2200, respectively, and we

evaluate cumulative unavailability over t = 6000 hours and

unreliability over t = 50000 hours.

The cumulative unavailability graphs (Fig. 5) show that the

model under enabling restriction converges to the steady-state

more rapidly than the model with bounded regeneration (i.e.,

beyond enabling restriction), a consequence of replacing GEN

transitions (with bounded supports) with EXP transitions (with

unbounded supports). Moreover, for the optimal rejuvenation

period p = 1300 (Fig. 5a), unavailability of the model under

enabling restriction is always greater than that of the model

with bounded regeneration. This suggests that, although the

two models have transitions characterized by distributions with

the same expected value, the different nature of their analyti-

cal forms produces significantly different transient behaviors.

Notably, the transient metrics of the model under enabling

restriction are closer to those of the model with bounded

regeneration for the larger rejuvenation period p = 2200.

Fig. 6 illustrates that the model with bounded regenerations

(beyond enabling restriction) achieves lower unreliability, i.e.,

the system is less likely to fail during the same time interval.

This behavior is more pronounced when the optimal rejuve-

nation period p = 1300 is considered: for the model with

bounded regenerations, unreliability converges to 1 only after

t = 50000 hours of operation, while t = 20000 hours are

sufficient for the model under enabling restriction.

This comparison explains the difficulty of optimizing system

parameters using a model under enabling restriction, where

only mean values of observed activity durations can be accu-

rately represented, resulting in notably different performance

metrics. In contrast, models with bounded regeneration can

include GEN timers to fit multiple statistics (e.g., mean and

variance) of collected data, as well as multiple DET timers; the

increased expressive power allows modeling of more advanced

rejuvenation strategies, such as those presented in the next

section.

IV. EVENT-DRIVEN REJUVENATION POLICY

In this section, we illustrate how the expressive power

of models beyond enabling restriction allows the study of

new rejuvenation strategies combining periodic rejuvenation

with event-driven rejuvenation based on system diagnostics

(Section IV-A). Then, we compare steady-state and transient

metrics of this model with those of the model using only pe-

riodic rejuvenation and analyzed in Section II (Section IV-B).

A. Modeling event-driven rejuvenation policies

The model illustrated in Fig. 1b describes a system where

rejuvenation is triggered periodically. In many concrete cases,

the rejuvenation process can be guided by system diagnostics,

which provide statistical insight into the safety status of the

system. System diagnostics can be used to estimate the proba-

bility that the system is in an error state, determining whether

to start rejuvenation. Combining the periodic rejuvenation

approach with an event-based approach can result in improved

management of an aging system, since rejuvenation can be

anticipated when system diagnostics indicate high probability

of an error state, while periodic rejuvenation can improve

reliability when systems diagnostics are inaccurate.

In Fig. 1c, we propose a model combining the two ap-

proaches. The process consists of three steps (deterministic

transitions in the green section): after the first two steps

(waitClock1 and waitClock2) diagnostic tests (red sec-

tion) are started to determine whether to start rejuvenation

immediately; if none of the diagnostic tests report a failure,

then rejuvenation is started according to a time-triggered pol-

icy (waitClock). In the STPN model, when the diagnostic

tests start, a token is put in place Sample, which is the initial

state of the tests. If the diagnostic tests report a safe state, a

token is put in place Green. Otherwise, an error or failure are

likely to be present in the system; in this case, a token is put

in place Red, vacant tokens are removed from rejuvenation

and diagnostic processes (i.e., from places Clock1, Clock2
and Green), and a token is put in place Rej. The diagnostic

process can correctly or incorrectly predict whether the system

state is safe. This requires modeling four different situations:

the system is safe and no error is detected, the system is safe

but an error is detected, the system is unsafe and an error is

detected, the system is unsafe but no error is detected. The first

case is modeled through transition t2, which is enabled when

at least one token is in place Up. The undetected error state

is modeled through transition t3: in this case, the transition

is enabled when there is no token in place Up. Valid error

or failure detection are modeled through transition t4, which

is enabled when no tokens are in place Up. Invalid error or

failure detection are modeled through transition t5, which is

enabled when at least one token is in place Up. The probability

of predicting a correct state is 0.9, both in the case of fault

detection and in the case of safe state detection. The rest of

the rejuvenation process (green section) and the aging and

repairing process (blue section) are modeled and operate as

described in Section II-A.

142

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on March 11,2024 at 18:52:22 UTC from IEEE Xplore. Restrictions apply.

0 1000 2000 3000 4000 5000 6000

Time (hours)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
C
u
m
u
la
ti
ve
U
n
av
ai
la
b
ili
ty
(H
ou
rs
)

Bounded Regeneration (Periodic)

Enabling Restriction (Periodic)

(a)

0 1000 2000 3000 4000 5000 6000

Time (hours)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
u
m
u
la
ti
ve
U
n
av
ai
la
b
ili
ty
(H
ou
rs
)

Bounded Regeneration (Periodic)

Enabling Restriction (Periodic)

(b)

Fig. 5: Cumulative transient unavailability of models in Figs. 1a and 1b with rejuvenation periods 1300 (a) and 2200 (b).

0 10000 20000 30000 40000 50000

Time (hours)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
n
re
lia
b
ili
ty

Bounded Regeneration (Periodic)

Enabling Restriction (Periodic)

(a)

0 10000 20000 30000 40000 50000

Time (hours)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
n
re
lia
b
ili
ty

Bounded Regeneration (Periodic)

Enabling Restriction (Periodic)

(b)

Fig. 6: Transient unreliability of models in Figs. 1a and 1b with rejuvenation period equal to 1300 (a) and 2200 (b).

We also consider a variant of this model that triggers the re-

juvenation (i.e., puts a token in place Rej before waitClock
eventually triggers) only when system safety verification has

produced two warnings in a row. To model this case using

STPNs, it is sufficient to add the enabling function “Red==2”

to transition t6, which will be enabled only when two tokens

are present in place Red.

This model could be extended in multiple ways, for example

by varying the number of diagnostic stations, or by using a

different sub-model for each station. Although not possible in

STPN models, the system aging process could be emulated

in SIRIO by varying the probabilities for the execution of

transitions t1, t2, t3, and t4 based on the current system

state; moreover, different probabilities of correct prediction

could be used for fault detection and safe state detection.

B. Steady-state and transient metrics comparison

We consider the model of Section II-A (periodic rejuvena-

tion) and the models defined in Section IV-A (rejuvenating

periodically, or after 1 or 2 warnings), and we compare their

steady-state unavailability and undetected failure probability,

as well as transient unreliability and transient cumulative

unavailability.

Steady-state metrics, presented in Table II, show that the

probability of undetected failures can be reduced by an or-

der of magnitude (from 0.0000157 to 0.0000017) by using

diagnostics information to trigger rejuvenation on demand;

the model that requires two consecutive diagnostic warnings

results in greater steady-state probability of undetected failure

(0.0000021). In contrast, additional rejuvenation processes

triggered by diagnostics can result in worse steady-state avail-

ability, since the system is unavailable during rejuvenation.

We observe that unavailability is lower (0.0001670) in the

model with periodic rejuvenation; in the models with diag-

nostic stations and event-based rejuvenation, unavailability is

lower (0.0003255) when two warnings are necessary to trigger

rejuvenation instead of one (0.0003324).

143

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on March 11,2024 at 18:52:22 UTC from IEEE Xplore. Restrictions apply.

Rejuvenation Model (Bounded Regeneration)

Metric Periodic Periodic and 1-Warning Periodic and 2-Warning

P(Undetected Failure) 0.0000157 0.0000017 0.0000021
P(System Unavailable) 0.0001670 0.0003324 0.0003255

TABLE II: Steady-state metrics for the periodic model of Fig. 1b, and for variants of Fig. 1c using 1 or 2 warnings.

Fig. 7 illustrates the results obtained for transient metrics.

The transient cumulative unavailability confirms our observa-

tions regarding steady-state metrics. The classical rejuvenation

model presents lower values of unavailability, because it re-

duces the amount of time in which the system is under rejuve-

nation; between the two event-driven rejuvenation models, the

model requiring two consecutive failure warnings has lower

unavailability than the model requiring only one warning. On

the other hand, transient unreliability shows that models with

event-driven rejuvenation policies obtain higher reliability. In

fact, while at t = 50000 hours the model with periodic

rejuvenation policy is unreliable with probability close to 1,

the event-driven models are unreliable with probability lower

than 0.5. In addition, the unreliability of the model requiring

two consecutive fault warnings is higher than the unreliability

of the model requiring only one warning; this is expected,

since system diagnostics are highly accurate in our model (the

state of the system is correctly diagnosed with probability 0.9).

V. CONCLUSIONS

We addressed the problem of modeling and evaluating

software rejuvenation approaches aimed at counteracting the

software aging phenomenon. To this end, we presented a

non-Markovian model with an underlying stochastic process

from the class of MRGPs beyond the limit of the enabling

restriction, i.e., with multiple concurrent GEN timers enabled

in each state. The expressive power of this class of models

enables the derivation of stochastic parameters that fit multiple

statistics of observed, for example to preserve not only the

sample mean value but also the sample variance. We evaluated

reliability metrics for the proposed model and for a variant

obtained by replacing GEN distribution with EXP distributions

that fit only the mean value, in order to restrict the underlying

MRGP with the enabling restriction. Experimental results

show significant differences both in transient and steady-state

behavior, with non-negligible impact on the selection of a

rejuvenation period that achieves a trade-off between system

availability and probability of undetected failures.

The increased expressive power of MRGPs beyond enabling

restriction also allowed us to formulate and evaluate software

rejuvenation models that combine the usual time-triggered

rejuvenation policy with an event-triggered policy where warn-

ings emitted by a diagnostic mechanism are used to trigger

early rejuvenation. Experimental results show that the two

event-triggered policies under consideration improve system

reliability, at the cost of reducing its availability. Nevertheless,

this comprises an acceptable cost, given that repairing a system

0 1000 2000 3000 4000 5000 6000

Time (hours)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C
u
m
u
la
ti
ve
U
n
av
ai
la
b
ili
ty
(H
ou
rs
)

Bounded R. (Periodic)

Bounded R. (Periodic and 1-Warning)

Bounded R. (Periodic and 2-Warning)

(a)

0 100000 200000 300000 400000

Time (hours)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
n
re
lia
b
ili
ty

Bounded Regeneration (Periodic)

Bounded Regeneration (Periodic and 1-Warning)

Bounded Regeneration (Periodic and 2-Warning)

(b)

Fig. 7: Cumulative transient unavailability (a) and transient

unreliability (b) of models in Figs. 1b and 1c.

after a failure is typically more expensive than performing a

rejuvenation.

The results also show that the ORIS tool and the SIRIO

library can be effectively used to design and evaluate quanti-

tative models with underlying MRGPs beyond the enabling

restriction, supporting parametric studies to select optimal

stochastic parameters. More importantly, our analysis suggests

that software aging and rejuvenation models beyond enabling

restriction allow the evaluation of dynamic policies that im-

prove system reliability, motivating the adoption of this class

of models in the context of SAR.

144

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on March 11,2024 at 18:52:22 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Araujo, R. Matos, V. Alves, P. Maciel, F. V. d. Souza, R. M. Jr, and
K. S. Trivedi, “Software aging in the Eucalyptus cloud computing infras-
tructure: characterization and rejuvenation,” ACM Journal on Emerging
Technologies in Computing Systems (JETC), vol. 10, no. 1, pp. 1–22,
2014.

[2] D. Cotroneo, R. Natella, and R. Pietrantuono, “Predicting aging-related
bugs using software complexity metrics,” Performance Evaluation,
vol. 70, no. 3, pp. 163–178, 2013.

[3] S. Garg, A. Van Moorsel, K. Vaidyanathan, and K. S. Trivedi, “A
methodology for detection and estimation of software aging,” in Pro-
ceedings Ninth International Symposium on Software Reliability Engi-
neering (Cat. No. 98TB100257). IEEE, 1998, pp. 283–292.

[4] Y. Bao, X. Sun, and K. S. Trivedi, “A workload-based analysis of
software aging, and rejuvenation,” IEEE Transactions on Reliability,
vol. 54, no. 3, pp. 541–548, 2005.

[5] M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi, “Analysis of
software aging in a web server,” IEEE Transactions on reliability,
vol. 55, no. 3, pp. 411–420, 2006.

[6] T. Dohi, K. S. Trivedi, and A. Avritzer, Handbook of Software Aging
and Rejuvenation: Fundamentals, Methods, Applications, and Future
Directions. World Scientific, 2020.

[7] J. Xiang, C. Weng, D. Zhao, A. Andrzejak, S. Xiong, L. Li, and J. Tian,
“Software aging and rejuvenation in Android: new models and metrics,”
Software Quality Journal, vol. 28, no. 1, pp. 85–106, 2020.

[8] J. Parri, S. Sampietro, L. Scommegna, and E. Vicario, “Evaluation of
software aging in component-based web applications subject to soft
errors over time,” in 2021 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW). IEEE, 2021, pp. 25–32.

[9] R. Pietrantuono and S. Russo, “A survey on software aging and rejuve-
nation in the cloud,” Software Quality Journal, vol. 28, no. 1, pp. 7–38,
2020.

[10] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE transactions
on dependable and secure computing, vol. 1, no. 1, pp. 11–33, 2004.

[11] M. Grottke and K. S. Trivedi, “Fighting bugs: Remove, retry, replicate,
and rejuvenate,” Computer, vol. 40, no. 2, pp. 107–109, 2007.

[12] F. Machida, D. S. Kim, and K. S. Trivedi, “Modeling and analysis of
software rejuvenation in a server virtualized system,” in 2010 IEEE
Second International Workshop on Software Aging and Rejuvenation.
IEEE, 2010, pp. 1–6.

[13] D. S. Kim, F. Machida, and K. S. Trivedi, “Availability modeling
and analysis of a virtualized system,” in 2009 15th IEEE Pacific Rim
International Symposium on Dependable Computing. IEEE, 2009, pp.
365–371.

[14] C. Weng, J. Xiang, S. Xiong, D. Zhao, and C. Yang, “Analysis of
software aging in android,” in 2016 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW). IEEE, 2016,
pp. 78–83.

[15] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software rejuve-
nation: Analysis, module and applications,” in Twenty-fifth international
symposium on fault-tolerant computing. Digest of papers. IEEE, 1995,
pp. 381–390.

[16] I. O. for Standardization/International Electrotechnical Commission
et al., “ISO/IEC 25010: Systems and software engineering-systems
and software quality requirements and evaluation (square)-system and
software quality models,” Authors, Switzerland, 2011.

[17] G. Ciardo, R. German, and C. Lindemann, “A characterization of the
stochastic process underlying a stochastic Petri net,” IEEE Transactions
on software engineering, vol. 20, no. 7, pp. 506–515, 1994.

[18] G. Ning, K. S. Trivedi, H. Hu, and K.-Y. Cai, “Multi-granularity
software rejuvenation policy based on continuous time Markov chain,”
in 2011 IEEE Third International Workshop on Software Aging and
Rejuvenation. IEEE, 2011, pp. 32–37.

[19] V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S. Trivedi,
K. Vaidyanathan, and W. P. Zeggert, “Proactive management of software
aging,” IBM Journal of Research and Development, vol. 45, no. 2, pp.
311–332, 2001.

[20] V. G. Kulkarni, Modeling and analysis of stochastic systems. Chapman
and Hall/CRC, 2016.

[21] T. Dohi, K. Goseva-Popstojanova, and K. S. Trivedi, “Statistical non-
parametric algorithms to estimate the optimal software rejuvenation

schedule,” in Proceedings. 2000 Pacific Rim International Symposium
on Dependable Computing. IEEE, 2000, pp. 77–84.

[22] W. Xie, Y. Hong, and K. Trivedi, “Analysis of a two-level software
rejuvenation policy,” Reliability Engineering & System Safety, vol. 87,
no. 1, pp. 13–22, 2005.

[23] D. Chen and K. S. Trivedi, “Analysis of periodic preventive maintenance
with general system failure distribution,” in Proceedings 2001 pacific rim
international symposium on dependable computing. IEEE, 2001, pp.
103–107.

[24] J. Zhao, Y. Wang, G. Ning, K. S. Trivedi, R. Matias Jr, and K.-Y. Cai, “A
comprehensive approach to optimal software rejuvenation,” Performance
Evaluation, vol. 70, no. 11, pp. 917–933, 2013.

[25] F. Machida, V. F. Nicola, and K. S. Trivedi, “Job completion time
on a virtualized server with software rejuvenation,” ACM Journal on
Emerging Technologies in Computing Systems (JETC), vol. 10, no. 1,
pp. 1–26, 2014.

[26] S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi, “Analysis of
software rejuvenation using markov regenerative stochastic Petri net,” in
Proceedings of Sixth International Symposium on Software Reliability
Engineering. ISSRE’95. IEEE, 1995, pp. 180–187.

[27] D. Wang, W. Xie, and K. S. Trivedi, “Performability analysis of clus-
tered systems with rejuvenation under varying workload,” Performance
Evaluation, vol. 64, no. 3, pp. 247–265, 2007.

[28] K. Vaidyanathan, R. E. Harper, S. W. Hunter, and K. S. Trivedi, “Anal-
ysis and implementation of software rejuvenation in cluster systems,” in
Proceedings of the 2001 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems, 2001, pp. 62–71.

[29] A. Horváth, M. Paolieri, L. Ridi, and E. Vicario, “Transient analysis
of non-Markovian models using stochastic state classes,” Performance
Evaluation, vol. 69, no. 7-8, pp. 315–335, 2012.

[30] Sirio, “The Sirio Library for the Analysis of Stochastic Time Petri
Nets.” [Online]. Available: https://github.com/oris-tool/sirio

[31] M. Paolieri, M. Biagi, L. Carnevali, and E. Vicario, “The ORIS Tool:
Quantitative Evaluation of Non-Markovian Systems,” IEEE Trans. Soft-
ware Eng., vol. 47, no. 6, pp. 1211–1225, 2021.

[32] M. Biagi, L. Carnevali, M. Paolieri, T. Papini, and E. Vicario, “Exploit-
ing non-deterministic analysis in the integration of transient solution
techniques for Markov regenerative processes,” in International Con-
ference on Quantitative Evaluation of Systems. Springer, 2017, pp.
20–35.

[33] E. Vicario, L. Sassoli, and L. Carnevali, “Using stochastic state classes
in quantitative evaluation of dense-time reactive systems,” IEEE Trans-
actions on Software Engineering, vol. 35, no. 5, pp. 703–719, 2009.

[34] L. Carnevali, R. Reali, and E. Vicario, “Compositional evaluation of
stochastic workflows for response time analysis of composite web
services,” in Proceedings of the ACM/SPEC International Conference
on Performance Engineering, 2021, pp. 177–188.

145

Authorized licensed use limited to: Universita degli Studi di Firenze. Downloaded on March 11,2024 at 18:52:22 UTC from IEEE Xplore. Restrictions apply.

