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Abstract—Modern Web Applications rely on architectures
usually designed with modular software components whose be-
haviour is shaped over fundamental principles and characteristics
of the HTTP protocol. Dependency Injection frameworks support
designers and developers in the automated management of
components lifecycle, binding them to predefined scopes, thus
delegating to an outer and independent participant the respon-
sibility of creation, destruction and inter-dependencies definition
of runtime instances. In this way, different scopes configurations
implicitly act as different software micro-rejuvenation policies,
emphasising the importance of choices in the assignment of
component scopes; while supporting the stateful behaviour in
data-retention mechanism, wider scopes may majorly expose in-
memory components to software aging processes.

We report a practical experience illustrating how the memory
maintained in the business logic of a Web Application may
give space to aging processes affecting the runtime behaviour
of a stateful web application, and we show how this threat
is contrasted by micro-rejuvenation at component level imple-
mented by the container under different assignment strategies
for components scopes. To this end, we propose an accelerated
testing approach relying on a fault injection process that executes
an event-driven simulation of arising soft errors over time.
Experimentation on an exemplary web application implemented
on the stack of Java Enterprise Edition show how manifestation,
correction, and propagation of errors are conditioned by different
scopes assigned to components by the software developer.

Index Terms—Accelerated testing, Software Aging, Software
Micro-Rejuvenation, Fault Injection, Soft Errors, Software Ar-
chitecture.

I. INTRODUCTION

In the architecture of Web Applications [1]–[3], the state of

user interaction is commonly maintained in a layer of transient

components so as to reduce the workload on the DataBase

Management System (DBMS) and to avoid persistence of

intermediate data that become unrelevant after completion of

the user goal [4]. In particular, in stateful architectures these

software components are maintained server-side, in a business
logic layer [5] made of page controllers and utility beans (e.g.,

Data Access Objects in architectures exploiting the Object

Relational Mapper pattern [6]) that serve the client in the

access to displayed data and control page navigation according

to user actions.

Most Web Applications exploit ad hoc functionalities for

automating management of components lifecycle according

to built-in scopes, shaped by the client-server paradigm and

the HTTP protocol [7], [8] and specialized to fit specific

needs of application use cases: components with a session
scope maintain their state along the entire HTTP session,

from the first user contact (e.g., the login use case) until the

application is left (e.g., the logout use case); whereas, request
scoped components live only for the time interval needed

to serve a single HTTP request triggered by a user action

(e.g., for displaying a page content). Other components live

along an intermediate scope, here referred to as conversation
(from the term used in the Java Enterprise Edition ecosystem),

demarcated by specific begin/end programmatic events that

capture the limits of a use case in the function level [4] (e.g.,

in the management of the shopping cart of an e-commerce

transaction). Finally, components with application scope live

from start-up to shut-down of the application (e.g., to handle

log data or to maintain shared variables accessed by multiple

users).

In the good practice of Web Applications development,

lifecycle management of stateful components in the business

logic layer is delegated to a container, which implements

the architectural pattern of Dependency Injection [9] and

takes care of creation, sharing, and destruction of components

instances. Various technologies support Dependency Injection

and automated lifecycle management in major programming

languages and ecosystems, notably including Autofac [10] in

C# and Contexts and Dependency Injection (CDI) [11] in Java.

Operation of the container is controlled by the software

developer through class-level configurations (e.g., Java

annotations) that associate all the instances of each plain type

with a scope, which elevates plain object types to the level

of managed components. When doing so, the developer has a

design space in the choice of scopes to be associated with each

type of bean, which implicitly specifies a kind of software

rejuvenation policy that will be implemented by the container
through automated handling of creation, initialisation, and

destruction of managed components. Note that this will not

result in reboot of the physical servers (hot/cold spares) [12],

of the Virtual Machine [13], of the Application Server [14],

or of the client-side mobile device [15], [16]. Instead,

this comprises a reboot at the software component-level
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that produces a kind of micro-rejuvenation [17], [18]. In

this perspective, wider scopes, maintain alive (in-memory)

instances for a longer time and thus expose components to

aging processes [19], [20], while smaller scopes produce

more frequent refresh of the state of each single component

instance. Specifically, by associating each managed type

with a request scope, the developer maximises the frequency

of rejuvenation, which will occur for each component on

completion of the actions triggered by each HTTP request

generated by the User Interface (UI). This minimises the

probability that an error, occurred in the state of some

managed component, is propagated in the computation and

then transferred, either to other components or to functional

behaviour delivered by the UI. However, components living

only for the time of a single request result in stateless
behavior and thus require that data needed along the user

session be stored with some more resource demanding action,

usually implemented through a DBMS access or through

web cookies [21]). Conversely, if a component is associated

with the session scope, any error accumulated along its

interactions may be maintained and propagate along the

Fault-Error-Failure chain [22] established by dependency

relationships among components. as a logical consequence,

the aging effects may be reduced by conversation-scoped

components and may be maximised by application-scoped

components, that maintain and propagate their states until the

application shut-down.

In this paper, we report a practical experience illustrating

how the memory maintained in the business logic of a Web

Application may give space to aging processes affecting

the runtime behaviour of a stateful web application, and we

show how this threat is contrasted by micro-rejuvenation at

component level implemented by the container under different

assignment strategies for components scopes.

To this end, we present an approach for accelerated test-

ing [23]–[25] based on a process of software fault injec-

tion [26], [27] that emulates the arise of errors arriving over

time, as in the case of soft errors [28], during the operation

of a stateful Web Application. Experimental results, based

on the implemention of the proposed approach in a fault

injector and its application to an exemplary Web Application

implementing common patterns of the good practice based

on the JEE technology stack, permit to observe how different

scopes assigned by the software developer yield different

sensitivity to errors arriving over time, both when assigned

to individual components or when applied as global policies.

The rest of the paper is organized as follows: in Sect. II, the

proposed approach for accelerated testing of Web Applications

designed with distinct scoped components is described; in

Sect. III, the experimentation of the approach on a stateful Web

Application, developed with JEE Specifications, is discussed

and significant results are presented; conclusions are finally

drawn in Sect. IV.

II. ACCELERATED TESTING APPROACH

We describe the accelerated testing approach implemented

and applied in the experiments, specifying principles of oper-

ation for injection and simulation of errors arriving over time

(Sect. II-A) and reporting details of a concrete implementation

that was developed to support fault injection for Web Appli-

cations in the JEE environment (Sect. II-B).

A. General principles of operation

The testing approach aims at observing the behaviour of

a stateful Web Application relying on Dependency Injection

and automated lifecycle management - here termed Imple-

mentation Under Test (IUT) - when external failures bring

components of the business logic layer in a state of error

that may eventually affect functions delivered by the UI. In

particular, this is intended to reproduce the impact of various

kinds of external failures arriving over time, independently

from the specific actions taken by the user and by the ap-

plication. As a notable case, this can result from soft errors
affecting transient and persistent memories (e.g., RAM, cache,

hard disks) [28]–[30]. This class of errors, due to cosmic rays

and alpha particles, was widely addressed in the literature

of dependability, in machine learning techniques based on

(deep) neural networks [31], [32], in availability and reliability

analyses of system-level effects over data storage systems [33],

and more recently in specific evaluation of sensitivity different

RESTful frameworks [34].

To this end, we consider a suite of test cases, each made

of the sequence of HTTP requests received by the server-side

during the realization of a variety of use cases by a real user.

To make the effect of errors observable, testing is accelerated

by replacing the real-time concurrent execution of HTTP

sequences and error arrivals with a simulation that reproduces

the real sequence of concrete states traversed by the application

in the test case, assumes that the state sojourns in each

state for a random duration with controlled distribution, and

determines the state where the error is injected by evaluating

the probability that each concrete state is hit at the error arrival

time.

In the current version of the error injection tool, inter-

arrival times between subsequent requests are assumed to be

exponentially distributed, and errors are assumed to arrive

according to a uniform distribution within the total duration of

the sequence. Both the assumptions can be easily relaxed with

no significant impact on the injector implementation. Note

that the latter assumption of uniform distribution comprises a

fairly precise approximation for the case where: errors arrive

according to a Poisson process with a constant rate much lower

than that of the sojourn time in each visited state; and, the

evaluation is limited to observe only the tests hit by at least

one arrival. Under these conditions, the probability of multiple

errors during the same test case is negligible, and the arrival

time is distributed according to a truncated exponential that

can be closely fit by a uniform distribution.
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Fig. 1. Data flow diagram representation of the proposed accelerated testing
approach that compares results of the execution of “faulty” runs subject to
fault injection strategies with that of a “clean” run interpreting the expected
IUT behaviours.

According to this, the injection of a fault in a run is

obtained: i) by sampling interleaving times of subsequent

requests; ii) by deriving the probability that the fault is

injected between them proportionally to the width of the

interval/interleaving time itself; and iii) by equally distributing

the probability among involved in-memory components. In

so doing, an event-driven simulation is enabled where the

time is not linearly accelerated by “waiting” and “sleeping”

mechanisms so as to speed up the flow of time, but it is

continuously carried forward to the instant corresponding to

the nearest future event (i.e., the lowest sample).

A conceptual representation of the approach is summarised

in the data flow diagram of Fig. 1, where main involved

elaboration processes are depicted. The IUT and the sequence

of selected use cases (i.e., the monitored usage scenario) act

as the primary inputs of the overall approach for generating in

output a table of results: P1 performs the test case generation,

obtaining a set of concrete test case template implementations;

P2 executes a “clean” run over the IUT, executing the test

case in absence of faults; P3 identifies components which

are alive and instantiated before each request in order to

determine an (C × R) binary matrix, named S, where C is

the number of scoped components and R is the number of

requests fixed for the simulation scenario; P4 executes N

Fig. 2. Data flow diagram detailing inner sub-processes of the core P4 process
of Fig. 1, outlining the stochastic characterisation of the approach.

“faulty” runs of the selected test case, each one subject to

a different injected fault; P5 compares the results of the N
faulty runs with the results of the “clean” run in order to

evaluate the aging sensitiveness of the involved components;

finally, P6 elaborates the output evaluation of P5, extracting

the final format.

Fig. 2 details the sub-flow of the core process (i.e., P4)

for the whole approach. Specifically, the sub-process P4a
exploits experimental parameters together with the generated

test case templates so as to enabling a sampling stage of

request interleaving times between subsequent requests. In

particular, different lambda rate parameters can be adopted for

each request, in order to emulate the human user interaction

time with the UI (e.g., filling a text area field within a form

takes different times wrt clicking an action button). P4a
generates a (R × N) matrix, named T , whose ti,j element

is the sampled interleaving time of the i-th request in the

j-th run, and N is the total number of performed runs. P4b
elaborates a (R × N) matrix, named Z, representing for

each request of each run the probability that the fault is

injected before the arrival of the request. The probability

zi,j =
ti,j∑R

ξ=1 tξ,j
is directly proportional to the width of the

interval sample of the i-th request wrt all requests samples

of the considered run. As a consequence, the
∑R

i=1 zi,j = 1.

P4c mixes fault probabilities values of the Z matrix, with

information about instantiated components of the binary S
matrix (where si,j is equal to 1 if and only if an instance

of the i-th component is alive in the j-th request), for

obtaining the (C ×R×N) tensor, named F . The probability

fi,j,k =
zj,k·si,j∑C
ξ=1 sξ,j

is computed as the probability that the
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injected fault affects the j-th request in the k-th run, divided

by the number of instantiated and alive components. P4d
launches N test runs, injecting faults in compliance with

the probabilities of the F tensor; finally, P4e elaborates the

output results.

B. Concrete implementation in the JEE ecosystem

The simulation of a real usage of the IUT requires to exploit

a web driver - in this work implemented with the automation

testing framework, named Selenium Web Driver [35] - for

mocking user interactions on the UI (e.g., click of a button,

fill of a text field) and for facilitating the inspection of

displayed values (making assertions on displayed texts or on

the existence of specific UI widgets). Usually, web drivers

are not capable of accessing the actual alive components

instances, preventing a wide range of grey box approaches.

To overcome this limitation, the Arquillian [36] ecosystem

has been adopted in conjunction with the Arquillian Warp
extension for accessing all the contextual instances living

server-side before, or after, a simulated user interaction.

Our implemented JEE module is designed for retrieving all

living contextual instances, managed in background by the

CDI framework, so as to perturb them during the execution

of the simulation scenario. In so doing, fault injections can be

programatically triggered before the concrete execution of a

user interaction on the UI, thus enabling actuation of request

arrival times and errors activation, as described in Sect. II-A.

For each executed simulation of a scenario, different indi-

cators are monitored and collected:

• the final state of the application; we interpret it as the

collection of the living contextual instances after the

completion of the last HTTP request of the scenario;

• the state of the perturbed contextual instance; during the

execution, the fault injection is triggered at a defined time

instant (see Sect. II-A for details) perturbing one of the

living components. Due to the implemented rejuvenation

strategy or to the error propagation mechanism, it may

be difficult to retrieve the original perturbed component

simply by knowing of the final application state. To this

end, after the injection, the component fully qualified

name, its scope and the type of perturbation are saved;

• the number of failures manifested during the simulation;

in a FEF chain perspective, only top-level failures (i.e.,

failures manifested on the UI and visible to the end-

user) have been considered, thus neglecting failures of

intermediate components.

Listing 1 reports an illustrative code snippet related to

a test case for illustrating the implementation style of a

simulation scenario. The Warp.initiate() method

(line 5) defines what happens in a single user interaction

from the end-user perspective, defined in turn by the

Activity class definition through the overriding of the

perform() method (line 7). Assertions and behaviours from

the server-side perspective are defined in the inspect()
method (line 15) through the InjectionInspection

1 @Test
2 public void testScenario1() {
3 ...
4 // A user interaction
5 Warp.initiate(new Activity() {
6 @Override
7 public void perform() {
8 homePage = new SimpleAppHome(driver);
9

10 if (!homePage.checkPageCorrectState())
11 failureOccurred(runInfoFilePathStr);
12

13 homePage.clickButton();
14 }
15 }).inspect(new InjectionInspection() {
16

17 String path = testDirStr;
18

19 boolean executeFaultInj = shouldInject();
20

21 @Inject
22 BeanManager bm;
23

24 @BeforeServlet
25 public void injectFault(){
26 if (executeFaultInj)
27 injectFault(bm,
28 path + "/errorInjected");
29 }
30

31 // Invoked only in the final interaction
32 @AfterServlet
33 public void saveFinalState() {
34 InstanceFinder.gsonPrint(
35 InstanceFinder.retrieveState(bm),
36 finalStateDir);
37 }
38 });
39 ...

Listing 1. Java code snippet representing how a simulation scenario is
concretely implemented through the proposed JEE module.

class definition; since considered scenarios are composed

by a sequence of user interactions, their implementation

will be a sequence of invocations of initiate() and

inspect() methods. The snippet also shows the invocation

of the prescribed user action (i.e., clickButton() at

line 13) only after the evaluation of the occurrence of a

top-level failure (i.e., checkPageCorrectState() at

line 10) within the current page (i.e., homePage). The

InjectionInspection class has been defined for setting

up some action hooks, through ad hoc annotation decorators

(i.e., @BeforeServlet and @AfterServlet), where

invoke specific methods (e.g., injectFault() and

saveFinalState()). Specifically, the injectFault()
method (line 25) is responsible for triggering the fault

injection, if required (i.e., shouldInject() evaluation

at line 19), and save the state of perturbed components,

according to the probability matrix obtained from the tensor

F = [F ]i,j,k where k is constrained to the current run,

as described in Sec II-A. Finally, saveFinalState()
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1 @Deployment(testable = true)
2 public static WebArchive createDeployment() {
3 WebArchive war = ShrinkWrap
4 .create(WebArchive.class, "deployment.war")
5 .addPackages(true, "appPackageName")
6 .addClass(InjectionInspection.class);
7 .addClass(FaultInjector.class)
8 .addClass(InstanceFinder.class)
9 .addClass(ObjectConverter.class)

10 .addClass(CtxInstanceExclusionStrg.class)
11

12 return war;
13 }

Listing 2. Java code snippet of an exemplary deployment configured and
generated through ShrinkWrap for the Arquillian test suite.

method at line 33 retrieves all the component instances in

order to save them within a file in the JSON format.

As a significant note, through the Arquillian deployment

mechanism, which adopts ShrinkWrap [37] for the creation

of Java archives files, our implemented module does not

need to be integrated within the production source code of

the IUT, thus enabling an experimentation stage with “no

modifications” on the Web Application under test.

Listing 2 represents the deployment of the archive referred

to the application (i.e., usually a .war file) that is essential for

the configuration of the test environment. This is accomplished

by implementing the public static method annotated with

@Deployment that returns the archive. As mentioned above,

the approach is so powerful and flexible that allows to insert

dynamically classes into an application without modifying

the real source code of the IUT; in this way, it enables the

design of tailored archives with only the classes needed

for the test suite, thus obtaining lighter deployments and,

consequently, speed up tests executions. As can be seen at

line 5, it is possible to add entire packages to the deployment

(in this snippet, the root package of the IUT is added), but

also to add single classes, as in lines 6− 10. Specifically, the

InjectionInspection class is a custom extension of

the Inspection Warp class, exposing the implementation

of the injectFault() method (invoked at line 25 of

Listing 1). The FaultInjector class provides the specific

faults for a run, relying on the InstanceFinder class

for retrieving server-side components instances, and on

the ObjectConverter class which converts a random

number in other base types. The InstanceFinder is

also used in Listing 1 at lines 34 and 35 in order to

generate the JSON file and save the final state. Lastly, the

CtxInstanceExclusionStrg class defines custom

serialisation strategies (e.g., during the serialisation process

from object to JSON string, it selects only the state of a

subset of contextual instances).

Our concrete module randomly chooses a contextual

instance among the available living ones and, then, randomly

picks one of its fields before applying a perturbation (i.e.,

if the field is a native numerical or literal type, a random

number is assigned, otherwise if the field is a structured

object instance, its internal state is perturbed in compliance

to its inner fields).

The implementation of the fault injector is opened to further

integrations for additional behaviours, such as components/-

fields blacklists (i.e., lists of components/fields that should

be ignored by the injector), components (or fields) specific

extraction probabilities (also depending on their state), or spe-

cial perturbation strategies (i.e., it could be defined a specific

perturbation for a component or a group of components1).

III. EXPERIMENTATION

For the experimentation stage, the behaviour of the IUT has

been analysed: activating a fault does not necessarily causes an

immediate failure, it could rather lead to an erroneous internal

condition (i.e., the erroneous state) remaining silent for an

unpredictable period of time or evolving into further errors

(i.e., error propagation). Under these assumptions, a failure

could be caused by a set of events occurring over a long-term

period of time, making the failure detection and the subsequent

fault removal phase extremely difficult [39].

For all these reasons, the experimentation has been based

not only on failures caused by the fault injection but also on

the runtime internal state of the IUT; raw data obtained during

each performed simulation with the JEE module (described in

II-B) is exploited so as to derive further information about the

effects of simulated error activations. Each run is classified

with one of the following categories:

• manifested failures (i.e., top-level failures manifested

during the run) highlighting that errors have deviated

some external states of the system also affecting func-

tionalities and services offered through the UI, thus

implying that the rejuvenation policy was “too soft”. This

information is derived, addressing the number of failures

observed by the JEE module during each simulation;

• latent errors (i.e., errors that do not contribute in top-

level failure manifestations neither are corrected by the

rejuvenation policy) remaining hidden during the run.

This information is derived comparing the final state of

the “clean” run with the final state of the “faulty” run (if

at least one component state differs from its counterpart

obtained after a “clean” run and there are no manifested

failures in the simulation, then a latent error occurs);

• corrected errors (i.e., errors that are automatically cor-

rected by the Dependency Injection container) outlining

the success of the rejuvenation strategy defined through

the designed component scope. This information is de-

rived by comparing the final state obtained after a “clean”

run with the final state of the simulation (if there are no

1For example, if the field extracted is an ordered list, it could be defined a
type of perturbation that changes the order of the list items, alternatively, if
the field is a string that requires a specific input format (e.g., a mail address) it
could be defined a perturbation that changes the address with another random
one, still respecting the constraint (e.g., email regex [38]).
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TABLE I
SCOPE-WISE EXPERIMENTATION RESULTS: DIFFERENT ASPECTS RELATED

TO SENSITIVITY TO ERRORS OVER TIME ARE REPORTED FOR EACH

STATEFUL SCOPE DURING AN EXPERIMENTATION MADE OF 200 RUNS.

Manifested Latent Corrected
Scope failures errors errors

(%) (%) (%)

application 42.4 57.6 0
session 48 36 16
conversation 12 24 64

differences and if no failures have occurred, then the error

has been corrected successfully).

The proposed approach for accelerated testing has been

experimented in two modes: i) scope-wise experimentation,

with the aim of studying how the perturbation of a component

of a certain scope can affect the overall behaviour of the

IUT, thus demonstrating that long-living components are

more error-prone than short-living ones; ii) policy-wise
experimentation, with the aim of comparing two different

- but functionally equivalent - versions of a simple Web

Application designed under two distinct principles for the

lifecycle design of scoped components (i.e., data long

retention principle vs lower scope principle) in terms of

reliability.

The results of the scope-wise experimentation are outlined

in Tab. I; as can be seen, the wider scopes (i.e., session
and application) tended to manifest failures and to show the

presence of latent errors more frequently than the narrower

one (i.e., conversation) which, in general, demonstrated a

greater robustness to errors over time.

Note that application scope never corrects error, this is

due to the fact that no rejuvenation strategy is applied. As a

remark, the request scope is not reported in the table since its

components instances live only within single HTTP requests

and, so, their state is continuously refreshed almost preventing

errors over time to perturb them.

It is also interesting to examine how components associated

with wider scopes are more likely to be picked up by the

fault injector (our experimentation has shown a sampling

probability of 0.625, 0.25 and 0.125 for application,

session and conversation, respectively, after 200 runs).

This intrinsically reflects the stochastic characterisation

of the approach, adopted in sampling times and choosing

components for the fault injection mechanism, described in

Sect. II-A: components living more during the simulation

have more chance to be chosen for the soft errors injection.

The policy-wise experimentation adopted the following

principles for components lifecycle design:

• data long retention principle, which encourages the

use of wide scopes (e.g., application, session), allowing

to store in-memory information for extended period of

times avoiding to retrieve or re-compute them; as a

TABLE II
POLICY-WISE EXPERIMENTATION RESULTS: RESULTS OF THE

COMPARISON BETWEEN A VERSION OF THE UNDER MONITORED WEB

APPLICATION WHICH FOLLOWS THE LOWER SCOPE PRINCIPLE AND A

VERSION WHICH FOLLOWS THE DATA LONG RETENTION PRINCIPLE.
RESULTS ARE OBTAINED WITH 100 RUNS PER VERSION.

Manifested Latent Corrected
Principle failures errors errors

(%) (%) (%)

data long retention 42 46 12
lower scope 30 26 48

TABLE III
ERRORS PROPAGATION METRICS OBTAINED ALONGSIDE THE SCOPE-WISE

EXPERIMENTATION. THE PERCENTAGE OF “PROP. RATIO” COLUMN IS

OBTAINED AS THE RATIO BETWEEN THE VALUES WITHIN “MEAN

PROPAGATED ERRORS” AND “MEAN TOUCHED COMPONENTS” COLUMNS.

Errors Mean Mean Prop.
Scope propagation propagated touched ratio

(%) errors components (%)

application 44 1 4.6 21.7
session 32 1.33 2.5 53.2
conversation 16 1.25 1.7 73.5

drawback the memory is majorly occupied by data that

are essentially not useful in the current computation;

• lower scope principle, which promotes the usage of

scopes as narrow as possible (e.g., request), minimising

the memory occupation while requiring a dedicated place

to store runtime data (e.g., the local or session storages in

the client-side or dedicated databases in the server-side),

thus producing an overhead in computation.

The results of the policy-wise experimentation are outlined in

Tab. II; as can be seen, values are consistent with the scope-
wise experimentation since under the lower scope principle
is plausible to assume that components are predominantly

conversation or even request scoped, while under the data
long retention principle the scopes will be mainly session and

application.

While outperforming the data long retention principle in

these results, the lower scope principle cannot be considered

the best solution for every implementation; indeed, the selec-

tion of a specific policy implies a trade-off between the ability

of correcting Aging Related Bugs (ARB) [40] and the related

computation overhead.

If the rejuvenation is rarely applied, ARBs could be ac-

tivated and propagated. Conversely, if the rejuvenation is

frequently applied, the components state need to be stored

in other dedicated places, also affecting the performance of

the IUT. Moreover, narrower scopes may also not guarantee

the problem resolution: some use cases in Web Applications

need to retain data across many HTTP requests, so the data

must be maintained within databases or frontends, which in

turn are not protected from soft errors over time. In so doing,

the problem may just have been moved elsewhere.
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Besides, we also collected information about errors prop-
agation (i.e., errors which manifest and propagate failures

in external components dependent on directly affected ones,

also producing the activation of external faults and consequent

errors) that increase the number of the possible sources of fail-

ures. Specifically, we considered only propagations affecting

dependent components that are in an erroneous state at the end

of the run (neglecting cases in which the propagation is cor-

rected by a rejuvenation of the component). This information

is derived comparing the final state of the “clean” run with the

final state of the “faulty” run (i.e., if other components near

by the one, affected by the injection, are in an erroneous state

- different from the state obtained after a “clean” run - then

the error propagation occurs).

Errors propagation is a crucial parameter for the overall

sensitivity to soft errors over time: it gives rise to the error

accumulation problem [41], complicating the correction (i.e.,

more than one component has to activate the rejuvenation

strategy to fix the error, also generating “chain reactions”

where more components could cause failures and propagate

errors, recursively). In Tab. III, we report propagation-related

measurements obtained during the scope-wise experimenta-
tion; in particular, we provide the percentage of runs with

at least one error propagation (i.e., the Errors propagation
column), also providing the mean number of components

(excluded the perturbed one) with an erroneous state at the end

of each simulation (i.e., the Mean propagated errors column).

Although these measures give an idea on the actual error

propagation for each scope, they only partially express how

components could spread errors throughout the IUT and to

complete this observation, we also monitored the propagation

capacity for each scope. In order to assess this measure,

we added a “dirty bit” on each instance which indicates

whether a component has been exposed to the possibility

of being contaminated with an erroneous state by another

instance, during the run, every time a component, with the

dirty bit set to true, interacts with another component the

dirty bit of the latter becomes true. Note that, the component

interaction involves both sides of the dependency between

scoped components: a dirty component (with the dirty bit

enabled) could use a method of a component with the dirty bit

disabled and then dirt it, on the other side, a clean component

(with the dirty bit disabled) could call a method of a dirty

component and, consequently, getting itself dirty. Even if, the

application scope seems to have, on average, a lower number

of propagated errors, the propagation occurs more frequently

with application scoped components (44% of the times against

the 16% of the conversation scoped ones) and in addition,

the mean touched components for each scope are directly

proportional with the lifecycle of the scope.

We also evaluated the ratio (i.e., the Prop. ratio column)

between the “Mean propagated errors” and “Mean touched

components” that represents how many components have been

effectively affected in average wrt the components that might

have been affected (i.e., touched components with a set dirty

bit). For some kind of reason, while - in the absolute sense -

wider scoped components results in propagating much more

errors, the narrower scoped ones seem to have a higher rate

in deviating the runtime behaviour of interacting components

(i.e., activating some external faults in dependent components).

We expect this to be due to the fact that implementations of

narrower scoped components are strictly related to the inner

business logic of use cases, thus generating stronger relation-

ships and implementation couplings between components.

IV. CONCLUSIONS

In this paper, we presented an accelerated testing approach

for evaluating software aging effects in stateful Web

Applications subject to micro-rejuvenation policies, implicitly

controlled through Dependency Injection and automated

lifecycle management mechanisms. The approach leverages

stochastic injection of faults simulating the occurrence of

soft errors over time, which enables efficient event-driven

simulation of long-running scenarios made by several client-

server interactions subtending sequences of use cases.

We reported experimental results in two perspectives:

on the one hand, through a scope-wise experimentation we

outlined how long-living components are more error-prone;

on the other hand, through a policy-wise experimentation
we highlighted how the principle of minimising scopes (i.e.,

lower scope principle) increases the overall reliability of the

system, reducing the probability that errors are propagated,

with respect to the principle of adopting wide scopes (i.e.,

data long retention principle).

As a limit case, lifting to the extreme the lower scope
principle, if all components were associated to the narrower

scope (i.e., the request scope), then at each HTTP request the

state of the whole application would be refreshed (i.e., the

rejuvenation would act at the end of each request). In this case,

the Web Application would actually implement a stateless
behaviour (i.e., the state of each component is dependent

only to the data enclosed to a single HTTP request and to

the information persisted within dedicated data storages) thus

collapsing in a kind of RESTful architecture [42]. At first

glance, the stateless behaviour seems to provide rejuvenation

rates high enough to avoid almost any kind of software aging,

but actually, in this scheme, the complexity of the problem

is rather delegated to external management systems, such as

client-side frontends or in-memory databases, which are not

necessarily less exposed to soft errors. In this perspective, also

considering that backend servers should be more robust and

stable than mobile devices (e.g., smartphones, tablets) usually

hosting decoupled UIs, our research will focus on a deep

qualitative and quantitative evaluation on how server-side

micro-rejuvenation policies may affect external environments

in the propagation of soft errors.

Further development is ongoing to strengthen results in

various aspects with respect to various threats to validity.

Though current results were obtained on a realistic state-

of-the-art application, further development is ongoing to
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experiment with a stable Web Application using real data

collected in a production environment. This objective is

largely facilitated by the structure of the fault injection

module, which is designed to be easily pluggable to any JEE-

based source code. Further experimentation will also address

the dependency of results on the number of dependencies

and the type of monitored components, so as to permit

a classification of the error propagation proneness of a

component through analysis of its scope and state.

Last but not least, experimentation will also address mon-

itoring of resource demand to characterize the trade-off be-

tween efficiency and fault tolerance enabled by longer or

shorter scopes, respectively.
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