
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. XX, MONTH YEAR 1

Cost-Effective Software Rejuvenation Combining
Time-Based and Inspection-Based Policies

Laura Carnevali Member, IEEE , Marco Paolieri Member, IEEE , Riccardo Reali,
Leonardo Scommegna Member, IEEE , and Enrico Vicario, Member, IEEE

Abstract—Software rejuvenation is a proactive maintenance technique that counteracts software aging by restarting a system, making
selection of rejuvenation times critical to improve reliability without incurring excessive downtime costs. Various stochastic models of
Software Aging and Rejuvenation (SAR) have been developed, mostly having an underlying stochastic process in the class of
Continuous Time Markov Chains (CTMCs), Semi-Markov Processes (SMPs), and Markov Regenerative Processes (MRGPs) under
the enabling restriction, requiring that at most one general (GEN), i.e., non-Exponential, timer be enabled in each state. We present a
SAR model with an underlying MRGP under the bounded regeneration restriction, allowing for multiple GEN timers to be concurrently
enabled in each state. This expressivity gain not only supports more accurate fitting of duration distributions from observed statistics,
but also enables the definition of mixed rejuvenation strategies combining time-based and inspection-based policies, where the time to
the next inspection or rejuvenation depends on the outcomes of diagnostic tests. Experimental results show that replacing GEN timers
with Exponential timers with the same mean (to satisfy the enabling restriction) yields inaccurate rejuvenation policies, and that mixed
rejuvenation outperforms time-based rejuvenation in maximizing reliability, though at the cost of an acceptable decrease in availability.

Index Terms—Software Aging and Rejuvenation (SAR), time-based software rejuvenation, inspection-based software rejuvenation,
Markov regenerative process, bounded regeneration restriction, stochastic state classes, stochastic time Petri net.

✦

1 INTRODUCTION

1.1 Motivation and challenges

The well-known phenomenon of software aging is empir-
ically observed to increase the failure rate and degrade

the performance of long-running software systems [17]. It
is due to the activation of Aging-Related Bugs (ARBs) [15],
i.e., software faults that manifest their effects over time,
affecting a variety of software systems like cloud infras-
tructures [31], operating systems, database management
systems and middleware [12], Software-Defined Network-
ing (SDN) [38], and cyber-physical systems [23]. As time
goes by, ARBs can be activated and propagated [2], leading
the system into error states with increasing failure probabil-
ity, until an aging-related failure occurs, e.g., a process crash
due to a memory allocation failure, caused by a memory
leak that progressively reduced the available resources.

ARBs are a subclass of Mandelbugs [15], i.e., bugs that
are difficult to isolate and systematically reproduce due to
complex activation and error propagation, often depending
on interactions with execution environments and third-
party integrated libraries [40]. Therefore, ARBs are hard to
detect and remove before deployment and operation, due to
the limited increase of detection probability with respect to
testing efforts [18]. To avoid or mitigate disruptive failures,
unnecessary resource consumption, and other aging effects,

L. Carnevali, R. Reali, L. Scommegna, and E. Vicario are with the
University of Florence, Department of Information Engineering, Via di
Santa Marta 3, 50139 Firenze, Italy. E-mail: {laura.carnevali, riccardo.reali,
leonardo.scommegna, enrico.vicario}@unifi.it
M. Paolieri is with the University of Southern California, Department of
Computer Science, 941 Bloom Walk, Los Angeles, CA 90089, USA. E-mail:
paolieri@usc.edu
Manuscript received Month Day, Year; revised Month Day, Year.

a viable alternative to fault removal is software rejuvenation,
a preventive and proactive maintenance technique that, in
its basic form, consists in repeatedly stopping the system,
cleaning its internal state, and restarting it [22]. This ap-
proach improves the system reliability (i.e., the probability
of operation without failures) by mitigating error accumu-
lation and propagation, while reducing the system avail-
ability (i.e., the probability of being available for service)
due to downtimes. Thus, the selection of rejuvenation times
subtends a crucial trade-off between software qualities of
reliability and performance efficiency [28].

1.2 Related works

In the literature on Software Aging and Rejuvenation (SAR),
various stochastic models have been used to compute op-
timal rejuvenation times [13] for different categories of
software systems and rejuvenation policies, thus yielding
different classes of underlying stochastic process. The con-
cept is illustrated by the Venn diagram shown in Fig. 1.

In the class of SAR models with an underlying Continu-
ous Time Markov Chain (CTMC), a two-step failure process
is taken into account in the seminal work [22], computing
the expected system downtime and its steady-state avail-
ability to derive the conditions under which rejuvenation
is useful. In [21], a condition-based maintenance model is
presented for systems subject to both deterioration failures
(i.e., failure due to gradual worsening of system parame-
ters) and Poisson failures (i.e., abrupt failures), performing
minimal or major restoration (i.e., reduction of accumulated
deterioration of an unfailed system) based on inspections
results, and minimal or major repair (i.e., recovery of a failed
system) depending on whether a Poisson or a deterioration

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. XX, MONTH YEAR 2

failure has occurred, respectively. The model is specified
through Generalized Stochastic Petri Nets (GSPNs) and
numerically solved to compute an optimal inspection policy
and an optimal mean time between inspections with respect
to maximizing the system throughput. Closed-form formu-
las of the steady-state availability and the mean time to fail-
ure for this model are derived in [9]. The impact of different
rejuvenation policies on the availability of cluster systems is
studied in [8] by analyzing models specified by Stochastic
Reward Nets (SRNs), using a hypo-Exponential distribution
for the time-to-failure and approximating a deterministic
rejuvenation period by an Erlang distribution to guarantee
that the underlying stochastic process is a CTMC. A hypo-
Exponential time-to-failure distribution is used also in [43],
deriving the optimal rejuvenation rate that maximizes an
analytical expression of the system availability.

Expressivity is improved by models with an underlying
Semi Markov Process (SMP) [25], making the system evolu-
tion dependent not only on the current logical state, as in a
CTMC, but also on the sojourn time in the state, which can
be characterized by a general (GEN, i.e., non-Exponential)
distribution. Typically, these models are defined by directly
identifying the SMP states, and they are analyzed to derive
the closed-form expression of the system availability, which
is maximized to compute the optimal rejuvenation sched-
ules, e.g., as performed in [14] for an extension of the model
of [22]. The SMP of a virtualized server is used in [29] to
derive the optimal rejuvenation schedule, minimizing both
the server steady-state availability and the completion time
of a job running on it. In [4], a two-level hierarchical model
is presented where a low-level CTMC degradation model
provides failure rate analysis to a high-level SMP proac-
tive fault management model, which, in turn, derives the
optimal rejuvenation schedule. A similar solution toolchain
is defined in [45] to implement software rejuvenation for
systems subject to memory leaks. A condition-based main-
tenance problem for a system subject to both deterioration
and Poisson failures is formulated in [10] in terms of a Semi-
Markov Decision Process (SMDP), performing joint opti-
mization of the inspection rate and the maintenance policy,
and assuming that all general variables take a deterministic
value (in particular, duration of maintenance and repair).

Expressivity is further improved by models with an un-
derlying Markov Regenerative Process (MRGP, often abbre-

&70&

603

05*3

HQDEOLQJ

UHVWULFWLRQ

ERXQGHG�UHJHQHUDWLRQ

UHVWULFWLRQ

WLPH�EDVHG

UHMXYHQDWLRQ

>��@�*DUJ�HW�DO�

WLPH�EDVHG

UHMXYHQDWLRQ

>�@�&DUQHYDOL�HW�DO�

PL[HG

UHMXYHQDWLRQ

�

XQOHDVKLQJ

*(1�GLVWULEXWLRQV

H[WHQGLQJ�FRQFXUUHQF\

DPRQJ�*(1�WLPHUV

Fig. 1. SAR models: classes of underlying stochastic process.

viated as MRP) [25], not requiring that the Markov condition
is satisfied at each state transition, as in an SMP, but only
requiring that it is eventually satisfied with probability 1
at specific times termed regeneration points. The expressive
power of MRGPs is crucial to model aging phases between
consecutive rejuvenations, although, in almost all papers, it
is strictly limited by the enabling restriction [11], requiring
that at most one GEN timer be enabled in each state. In the
seminal work [16], time-based rejuvenation is modeled by a
Markov Regenerative Stochastic Petri Net (MRSPN) using a
deterministic (DET) transition to represent the rejuvenation
period and Exponential (EXP) transitions for the remaining
durations (see Fig. 1). SAR models in this class are used
to represent various software systems with different aims,
e.g., to schedule rejuvenation of virtual machines and vir-
tual machine monitors in server virtualized systems [27],
to compare time-based and prediction-based rejuvenation
in cluster systems [35], and, to improve performability of
clustered systems with varying workloads [39].

Recently, time-based rejuvenation is specified in [7] by
a variant of the model of [16] having an underlying MRGP
under the bounded regeneration restriction [5]. This condition
is satisfied if a regeneration is always reached in a bounded
number of discrete events, and if GEN timers have DET
values or exponomial (often termed expolynomial) distri-
butions, thus breaking the enabling restriction by allowing
for concurrent GEN timers. Preliminary experiments show
that representing GEN timers impacts the evaluation of the
optimal rejuvenation period. An attempt of integrating time-
based and inspection-based rejuvenation is also performed
in [7], though considering only up to two inspections and
without optimizing the times at which they are performed.

1.3 Contribution

We define a novel mixed rejuvenation policy that combines
the time-based and inspection-based approaches [1]. Specif-
ically, timers are used to trigger inspections (i.e., diagnostic
test) of the system state; then, the inspection results are used
to decide whether rejuvenation is triggered immediately
(as in inspection-based approaches) or postponed; finally,
after at most a fixed number of inspections, rejuvenation
is performed anyway, regardless of the system state (as in
time-based approaches). We define a SAR model with an
underlying MRGP under the bounded regeneration restric-
tion, exploiting prior knowledge about the system behavior,
such as insights on the aging steps before failure, as well
as information derived from measurements or historical
data, such as statistics on rejuvenation times, and speci-
ficity (i.e., percentage of correctly predicted non-aged states)
and sensitivity (i.e., percentage of correctly predicted aged
states) of diagnostic tests. Then, we define an efficient quan-
titative approach to optimize the times at which inspections
and rejuvenations are scheduled. For each sequence of ob-
served inspection outcomes, we derive the time to the next
inspection or rejuvenation as the maximum time for which
the transient unreliability per time unit, given the inspection
outcomes since the last rejuvenation, is not larger than a
given threshold. In turn, this probability can be computed
by performing semi-symbolic transient analysis of the SAR
model by the method of stochastic state classes [19].

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. XX, MONTH YEAR 3

The proposed rejuvenation policy can be applied to any
software system where frequent inspections are costly and,
consequently, optimization of inspection times is needed to
achieve a tradeoff between reliability and availability, as oc-
curring in SDN networks due to severe resource constraints.
In this reference scenario, we consider an SDN-controller
subject to software aging, which acts as a monitored slave
sending aging-related indicators to a monitoring master,
e.g., another SDN-controller, responsible of implementing
the rejuvenation policy. Experiments are performed to com-
pute reliability and availability measures by varying the
number of inspections, and the sensitivity and specificity of
diagnostic tests, considering both constant and time-varying
values. The obtained experimental results show that mixed
rejuvenation outperforms pure time-based rejuvenation in
maximizing reliability, though at the cost of an acceptable
decrease in availability. By referring to our SDN scenario,
we also show that approximation of GEN timers with Expo-
nential timers having the same expected value (to comply
with the enabling restriction) yields inaccurate rejuvenation.

An artifact supporting replication of the experimental
results presented in this paper is available open-source un-
der the AGPLv3 license at http://github.com/oris-tool/sar.
The artifact uses the SIRIO Java library1 of the ORIS tool2 for
specification and analysis of the considered SAR models and
was used to obtain preliminary results in [7].

In the rest of the paper, first, we illustrate the motivating
scenario and we derive its stochastic parameters (Section 2).
Then, we illustrate the SAR models of time-based rejuvena-
tion under and beyond the enabling restriction, respectively,
comparing the optimal rejuvenation period obtained in the
two cases and the corresponding availability and reliability
measures (Section 3). Next, we present the SAR model of
mixed rejuvenation, combining time- and inspection-based
rejuvenation, comparing the achieved experimental results
with those obtained through the model with pure time-
based rejuvenation (Section 4). Finally, we draw our conclu-
sions and we discuss future research directions (Section 5).
A summary of the analysis methods used to compute the
dependability metrics is provided in the Appendix.

2 EMERGING COMPUTING SCENARIO

In this section, we define an emerging computing scenario
in the SDN context (Section 2.1) and we illustrate how its
stochastic parameters can be derived (Section 2.2).

2.1 System model
In the ever-evolving landscape of networked systems and
network softwarization, software aging has become a critical
issue. As networks have embraced paradigms like Software-
Defined Networking (SDN) [38], Network Function Virtual-
ization (NFV) [33], Multi-access Edge Computing (MEC) [3],
and Internet of Things (IoT) [26], the need to detect and
mitigate aging effects has become increasingly important.

Measurement-based software rejuvenation usually im-
plements continuous monitoring of many aging indicators,
i.e., system parameters that might indicate its aging state.

1. https://github.com/oris-tool/sirio
2. https://www.oris-tool.org/

However, in a softwarized network, continuous monitoring
would require continuous extraction and transmission of
data over the network, increasing bandwidth usage and
resource consumption. Since the number of network connec-
tions is likely to grow3 [24], continuous monitoring of soft-
warized network elements might soon be unfeasible. Thus,
reducing the monitoring overhead, in particular the polling
rate, is a challenge faced nowadays in various softwarized
network contexts like SDN [42] and IoT networks [34].

We consider SDN as exemplary use case scenario. SDN
is a network concept that enables centralized and intelligent
management and control of individual hardware compo-
nents through software. As shown in Fig. 2, the network
structure consists of three distinct planes, i.e., the application,
control, and data planes, which are interconnected by two
interfaces, i.e., the northbound interface, between the ap-
plication and control planes, and the southbound interface,
between the control and data planes. Specifically:

• The application plane provides a platform that en-
ables network operators to configure the desired
network control logic via the northbound interface.

• The control plane is the core of the SDN network.
On the one hand, it simplifies the process of network
decision-making in the application plane by abstract-
ing the network state and resource information. On
the other hand, the control plane converts the control
logic into basic flow instructions and implements
them into the data plane through the southbound
interface. The control plane is also responsible for
promptly adapting to network topology alterations
due to data plane failures, ensuring its consistency.

• The data plane is only responsible for directing pack-
ets based on the implemented flow instructions.

In particular, the control plane consists of one or more
SDN-controllers that interact with the SDN-switches of the
data plane, providing instructions and managing the traffic
flow based on the network policies and conditions specified

3. https://www.statista.com/outlook/tmo/internet-of-things/
worldwide#investment, accessed on March 10, 2024

Fig. 2. Graphical representation of the considered system model.

http://github.com/oris-tool/sar
https://github.com/oris-tool/sirio
https://www.oris-tool.org/
https://www.statista.com/outlook/tmo/internet-of-things/worldwide#investment
https://www.statista.com/outlook/tmo/internet-of-things/worldwide#investment

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. XX, MONTH YEAR 4

TABLE 1
Stochastic parameters of the system model depicted in Fig. 2.

Duration x Duration Statistics Duration PDF

Time to error µ = 240min ∧ σ = 180min f(x) = HYPOEXP(0.00615, 0.01289)
Time from error to failure µ = 840min ∧ σ = 600min f(x) = HYPOEXP(0.00208, 0.00277)

Time to failure detection P{x ∈ [0, 4] min} = 1 f(x) = UNI(0, 4)

Repair time (from failure state) P{x ∈ [2, 16] min} = 1 ∧ P{x ∈ [2, 8] min} = 0.7 f(x) = 0.0155193(x− 2)(16− x)e−0.2505x

Rejuvenation time (from working state) P{x ∈ [1, 2] min} = 1 ∧ P{x ∈ [1, 1.5] min} = 0.6 f(x) = 29.4711(x− 1)(2− x)e−1.0805x

Rejuvenation time (from error state) P{x ∈ [1, 4] min} = 1 ∧ P{x ∈ [1, 2] min} = 0.7 f(x) = 11.4951(x− 1)(4− x)e−1.8619x

by the application plane. Given the crucial role played by
SDN-controllers, a crash of even one controller could yield
unforeseen behaviors, e.g., impossibility for applications to
interact over the network, packet losses, degraded perfor-
mance and wrong results due to the lack of optimized paths
within the data plane [37]. Therefore, it becomes imperative
to improve the reliability of SDN-controllers (i.e., probability
that the controller will continuously perform its intended
function during a specified time interval [0, T]), in order
to reduce their failure risk, while not significantly reducing
their cumulative availability (i.e., expected time during which
the controller is working during a specified time interval
[0, T]), in order to limit their downtime [32], [44]. Meeting
this goal requires achieving a trade-off between reliability
and availability, as reliability is typically increased by pre-
ventive maintenance policies that reduce the availability.

In this study, we tackle the problem of software aging
in an SDN-controller, an issue already demonstrated and
addressed in the literature [37], [38]. The aging indicators of
the SDN-controller are sent across the network to another
element that analyzes them to determine the aging status.
As in [44], data are transmitted via the eastbound/west-
bound interfaces of the SDN-controller, either to another
SDN-controller or to an “out-of-band” server. Due to the
costs of continuous monitoring, aging tests are performed
by a threshold-based approach, relying on observed in-
stantaneous values of the aging indicator rather than on
collections of densely acquired measurements (as usual in
statistical and machine-learning approaches). Thus, the ag-
ing detection test gives a positive result if a predetermined
threshold is exceeded by the aging indicator. An aging
detection test is characterized by specificity and sensitivity,
possibly varying, typically increasing, over time, given that
aging effects become more evident over time and thus
easier to detect [30]. Specificity and sensitivity remain lower
than 1, which is realistic given that an aging indicator may
not always accurately reflect the system aging conditions
due to transient system loads [15]. Therefore, repeating the
test helps reducing the number of false negatives and posi-
tives. We thus aim at minimizing the monitoring overhead
while providing an optimal trade-off between availability
and reliability of the monitored SDN controller, by schedul-
ing a limited number of aging tests and exploiting their
outcomes to determine the time interval before executing
the next test or activating the rejuvenation process.

2.2 Stochastic parameters
For the SDN-controller, we consider a two-step failure pro-
cess, as usual in the literature on components subject to soft-

ware aging [16]. According to this, the SDN-controller is in a
safe state at the initial time, and then, due to software aging,
it may reach an error state which, in turn, eventually leads
to a failure state. In contrast to [16], we distinguish between
detected and undetected failures, considering that, when the
SDN-controller has failed, first the failure is detected and
then the controller is repaired, finally returning to the safe
state. In particular, failure detection is performed through
periodic checks of the controller state. When it is working
or aged, the SDN-controller can be rejuvenated, according
to different policies (discussed in Sections 3 and 4).

Table 1 shows realistic statistics for each duration consid-
ered in the SAR process, defined so that stochastic param-
eters are in the same order of magnitude as those reported
in [38]. According to the available statistics, durations are
fitted by different Probability Density Functions (PDFs) that
have already been shown to be suitable for characterizing
temporal parameters of software aging phenomena as well
as of rejuvenation and repair operations [6]. Specifically:

• If the expected value µ and the coefficient of varia-
tion cv are known, then the approximants of [41] can
be used. Specifically, if 1/

√
2 < cv < 1 is satisfied,

as actually occurring in our experiments, then the ap-
proximant turns out to be a hypo-Exponential (hypo-
EXP) PDF f(x) = (λ1λ2/(λ1 − λ2))(e

−λ2x − e−λ1x)
where λi = (2/µ)(1±

√
2cv2 − 1)−1 with i ∈ {1, 2},

e.g., if the system is working, the duration of soft-
ware aging has µ = 240min and standard deviation
σ = 180min (i.e., cv = 0.5), and it is fitted by a hypo-
EXP PDF with rates λ1 = 0.0021 and λ2 = 0.0027.

• If the duration represents the remaining time to the
occurrence of a periodic event having period p, then
it is characterized by a uniform PDF over [0, p], this
being a special case of the remaining life of a renewal
process [25], e.g., failure detection is performed every
4 min, and thus the remaining time to failure detec-
tion is associated with a uniform PDF over [0, 4] min.

• If the duration has bounded support [a, b] and is
lower than c ∈ (a, b) with probability p, it is modeled
by the exponomial PDF f(x) = α(x−a) ·(b−x)e−λx

with α, λ ∈ R+
0 ,
∫ b
a f(x)dx = 1, and

∫ c
a f(x)dx = p,

preserving integral p over [a, c] and finite support
with null values at the extremes, e.g., the repair time
of the SDN controller is between 2min and 16min,
and lower than 8min with probability 0.7, thus hav-
ing PDF f(x) = 0.1551 (x−2) (16−x) e−0.2505x over
the time interval [2, 16] min.

Quantitative evaluation of the SAR models considered

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. XX, MONTH YEAR 5

in this paper is performed by regenerative analysis based
on the method of stochastic state classes [19], [20] (see Sec-
tions 3 and 4). Given that the implementation of this method
provided by the SIRIO library accepts durations that are
associated with any non-Markovian distribution in the class
of exponomial functions, the proposed approach can be
easily tailored to any other statistics and approximant.

3 TIME-BASED SOFTWARE REJUVENATION

In this section, we illustrate the time-based software rejuve-
nation policy by referring to our SDN scenario (Section 3.1),
and we model the policy through a variant of the SAR model
of [16] beyond the enabling restriction (Section 3.2). Then,
we analyze the model to derive the rejuvenation period that
optimizes a trade-off between dependability-related mea-
sures (Section 3.3), showing that using a model under the
enabling restriction yields an inaccurate rejuvenation policy,
and discussing the impact on the SDN scenario (Section 3.4).

3.1 Time-based software rejuvenation policy
In the time-based policy, software rejuvenation is performed
periodically, using a pre-determined period, and it brings
the system back to its initial safe state. If rejuvenation is
triggered when the system is failed but the failure has not
yet been detected, a system repair is started immediately.

In the considered SDN scenario, once the rejuvenation
period is determined, the time-based policy could be en-
forced without performing monitoring actions, potentially
eliminating monitoring messages from the control plane.
However, completely removing SDN-controller monitoring
could lead to longer detection times in case of controller
failures. Therefore, it is recommended to implement at least
a keepalived mechanism to guarantee a sufficient level of
availability of the SDN-controller [44], as in fact considered
in our scenario, illustrated in Section 2.2.

3.2 SAR model under bounded regeneration restriction
Fig. 3 shows the models of time-based rejuvenation specified
using Stochastic Time Petri Nets (STPNs) [19]. STPNs model
concurrent timed systems with stochastic temporal param-
eters and discrete probabilistic choices. An STPN consists
of places, transitions, and arcs: places (in Fig. 3, depicted
as circles) containing tokens (depicted as dots inside circles)
model the discrete logical state of the system; transitions
(depicted as bars) model activities with stochastic dura-
tion; directed arcs (depicted as directed arrows) from input
places to transitions and from transitions to output places
model precedence relations among activities; and inhibitor
arcs (depicted as dotted edges) from inhibitor places to
transitions represent inhibitor conditions for the execution
of activities. A transition is enabled by a marking (i.e., an
assignment of tokens to places) if each of its input places
contains at least one token, none of its inhibitor places
contain any token, and its enabling function (indicated by
label “e”, not present in the models of Fig. 3) evaluates to
true. Upon enabling, each transition samples a time-to-fire
from its Cumulative Distribution Function (CDF), i.e., an
EXP distribution (EXP transitions are depicted as tick white
bars), a GEN distribution (GEN transitions are depicted as

tick black bars), or the generalized distribution of a Dirac
Delta function4 centered either at zero (transitions with
zero time-to-fire, not present in the models of Fig. 3, are
termed immediate (IMM) and depicted as thin black bars)
or at a non-zero DET value (transitions with non-zero DET
value are depicted as thick gray bars). The transition with
minimum time-to-fire is selected to fire, removing one token
from each of its input places, adding one token to each of its
output places, and applying its update function (indicated
by label “u”), i.e., an assignment of tokens to each place,
defined by a marking expression. Ties (i.e., limit cases of
synchronization among DET transitions with the same time-
to-fire, e.g., occurring when transitions with the same DET
value are enabled at the initial time) are solved by a random
switch determined by probabilistic weights of transitions
(indicated by label “w”, not present in the models of Fig. 3).

The STPN of Fig. 3a models the two-step failure process
illustrated in Section 2.2, which consists of an initial safe
state (modeled by place Up in Fig. 3a), an error state (mod-
eled by place Err), and a failure state (modeled by place
Down). Concerning failure detection, the model includes a
state where a failure has occurred but has not been detected
(modeled by place Down), and a state where a failure has
been detected and the system is repaired (modeled by place
Detected). Concurrently, the rejuvenation process starts
in an initial state (modeled by place Clock) waiting until
the rejuvenation period has elapsed (modeled by place
Rej): at this time, error or failure events are inhibited, and
rejuvenation is performed in safe or error states (modeled
by transitions rejFromUp and rejFromErr, respectively).
If the rejuvenation clock expires when a failure has oc-
curred but has not been detected, then a repair is started
immediately (modeled by transition rejFromDown). After
rejuvenation, the system goes back to the safe state and the
rejuvenation process restarts. According to this, transition
detect has an update function “Clock=0” in order to
stop the rejuvenation process during system repair, and
transition repair has an update function “Clock=1” in
order to restart the rejuvenation process after repair.

In Fig. 3a, the rejuvenation period is modeled by a DET
transition while the remaining durations are modeled by
EXP transitions fitting the expected values of the PDFs
reported in Table 1, so that the underlying stochastic process
is an MRGP complying with the enabling restriction. Con-
versely, the model of Fig. 3b extends the model of Fig. 3a by
replacing EXP transitions with GEN transitions having the
PDFs of Table 1, so that the underlying stochastic process
is an MRGP under the bounded regeneration restriction,
going beyond the enabling restriction by supporting the
representation of multiple concurrent GEN timers.

3.3 Optimal rejuvenation period

To set a suitable rejuvenation period p, we select the value p∗

that optimizes the trade-off between the steady-state un-
availability ā(p), a quantitative measure of the time dur-
ing which the system is not able to provide service, and
the steady-state probability of undetected failure r̄(p), a

4. Without loss of generality, we do not provide a formal definition
of generalized CDF and generalized PDF of a discrete random variable.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. XX, MONTH YEAR 6

error

0.1485

Rej

Down

0.5

rejFromDown

0.0042

Detected

0.0012

Err

Clock

detect

rejFromUp
0.6914

fail

Up

waitClock
rejFromErr

600

repair

0.5550

u

u

(a)

detect

rejFromErr
[0,4] uni

rejFromDown

fail

Up

420

[2,16] expol

waitClock

Err

[0,!] expol

Clock

rejFromUp
repair

[0,!] expol

Down

Rej

[1,4] expol

Detected

error

[1,2] expol

u

u

(b)

Fig. 3. STPN models of time-based rejuvenation: (a) an extension of the model of [16] to distinguish between detected and undetected failures,
having an underlying MRGP under the enabling restriction; (b) an extension of the model of Fig. 3a with multiple concurrent GEN timers, having an
underlying MRGP under the bounded regeneration restriction, i.e., beyond the enabling restriction. Temporal parameters are expressed in min.

(a) (b)

Fig. 4. Steady-state unavailability, undetected failure probability, and their average as a function of the rejuvenation period for: (a) the model of
Fig. 3a (with underlying MRGP under the enabling restriction) and (b) the model of Fig. 3b (with underlying MRGP under the bounded regeneration
restriction). The rejuvenation period that is optimal at minimizing the considered measures is indicated in red.

quantitative measure of interest to the system designers.
Specifically, we minimize the average of the two measures:

p∗ = argmin
p

(
ā(p) + r̄(p)

2

)
. (1)

Note that both unavailability ā(p) and unreliability r̄(p)
increase with the probability of system failures; when re-
juvenation is more frequent, ā(p) increases due to the addi-
tional periods of unavailability, but system failures are less
frequent, reducing ā(p) and r̄(p).

For both models in Fig. 3, ā(p) and r̄(p) can be evalu-
ated by performing regenerative steady-state analysis based
on the method of stochastic state classes [20], computing
the rewards “If(Down+Detected>0||Rej>0,1,0)” and

“Down”, respectively (evaluation of the model of Fig. 3a, sat-
isfying the enabling restriction, could also be performed in
closed form by inverting the matrix form of the generalized
Markov renewal equations, with global and local kernels
derived in the Laplace-Stieltjes domain). In particular, we
use the SIRIO library to evaluate (ā(p) + r̄(p))/2 for 143
variants of each model in Fig. 3b, obtained by varying the
rejuvenation period from 60min to 4320min (corresponding
to 3 days), with increments of 30min.

The analysis results are shown in Fig. 4. For the model
of Fig. 3a (enabling restriction), as shown in Fig. 4a, both
measures have a monotonic trend, which decreases for
the steady-state unavailability ā(p), reaching the value
0.008022, and increases for the steady-state probability of

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. XX, MONTH YEAR 7

undetected failure r̄(p), reaching the value 0.001833. The
rejuvenation period minimizing the average of these mea-
sures in Eq. (1) is 600min, achieving the objective 0.004722.
Conversely, for the model of Fig. 3b (bounded regeneration
restriction), r̄(p) increases with the rejuvenation period p,
converging to 0.001832. At the same time, ā(p) initially
decreases with respect to the rejuvenation period p, reaching
the minimum value 0.005921 for p = 510min, and then in-
creases, converging to the value 0.008006. The rejuvenation
period minimizing the average of ā(p) and r̄(p) in Eq. (1)
is 420min, achieving the objective 0.003250. Note that, for
the optimal period 600min obtained through the model of
Fig. 3a, the model of Fig. 3b achieves ā(600min) = 0.008100
and r̄(600min) = 0.001346, with average equal to 0.004722,
pointing out the inaccuracy of rejuvenation policies de-
signed using the model under the enabling restriction.

Note that, in Eq. (1), we select the rejuvenation period p
that minimizes a scalar metric, i.e., the average of the steady-
state unavailability ā(p) and the steady-state undetected
failure probability r̄(p), thus assigning equal importance to
these two metrics. Other functions are supported as well by
the approach, e.g., weighted average, geometric mean. Also
note that the probability that the system is in a failure state
(modeled by place Down) contributes to both unavailability
(the system is not available for service) and unreliability
(the system is down and not functioning). In contrast, the
probability that the system is in a rejuvenation (modeled
by place Rej) contributes only to unavailability. As a subtle
aspect observed in Eq. (1), by making the probability that the
system is in a rejuvenation higher, the probability that the
system is not available becomes lower, yielding the already
mentioned tradeoff between unavailability and unreliability.

In contrast to the optimization problem of Eq. (1), a
multi-objective optimization problem could be formulated,
which would result in a Pareto front of candidate times for
the rejuvenation period, with different tradeoffs between
unreliability and unavailability, as improving one of these
metrics worsens the other one. In the mixed rejuvenation
policy (presented in Section 4), where multiple parameters
need to be optimized, i.e., the times to the next inspection
or rejuvenation, multi-objective optimization would sub-
stantially increase the optimization times. Moreover, due to
the tradeoff between unreliability and unavailability, sepa-
rate optimization of these two metrics, one after the other,
would not work as well. Therefore, to allow the comparison
between the two rejuvenation approaches, we solve the
optimization problem with scalar objective of Eq. (1).

3.4 Dependability measures of optimal solutions

3.4.1 Unreliability and cumulative unavailability
We investigate how approximating GEN timers with EXP
timers that fit their expected value impacts on the evaluated
transient behavior of the system, by considering the cumu-
lative transient unavailability and the transient unreliability.
To this end, for both models of Fig. 3 with the optimal re-
juvenation periods derived in Section 3.3, we use the SIRIO
library to perform regenerative transient analysis based on
the method of stochastic state classes [19], using time limit
4320min (corresponding to 3 days) and time step 0.1min.
We evaluate the transient unreliability by computing the

reward “Down” with stop condition “Down==1” for the anal-
ysis (i.e., the system has encountered at least one failure).
Moreover, we derive the cumulative transient unavailability
at time t as the integral of the instantaneous unavailability
in [0, t], which, in turn is obtained by computing the reward
“If(Down+Detected>0||Rej>0,1,0)”.

Results are depicted in Fig. 5. As illustrated in Figs. 5a
and 5b, the transient unreliability increases with time, and,
at multiples of the rejuvenation period, the increase is re-
duced, confirming the importance of rejuvenation. Similarly,
as shown in Figs. 5c and 5d, the increase in cumulative
transient unavailability near multiples of the rejuvenation
period is reduced as time advances, due to the fact that the
corresponding sharp peaks in the transient unavailability
are distributed over longer periods of time with lower max-
imum probability values, as an effect of the randomness of
repair times (after which the rejuvenation clock is restarted).

Note that, the model of Fig. 3a (under enabling restric-
tion) achieves larger values of both the considered measures
with respect to the model of Fig. 3b (under bounded regen-
eration restriction), suggesting that, although the two mod-
els have transitions characterized by distributions with the
same expected value, the different nature of their analytical
forms produces significantly different transient behaviors.
Also note that, as the rejuvenation period increases, the dif-
ference between the computed measures decreases (i.e., blue
and red curves become closer), given that beneficial rejuve-
nation effects are reduced. It is also worth noting that, when
the optimal rejuvenation period is computed through the
model of Fig. 3a rather than through the model of Fig. 3b, a
significant increase in unreliability is observed (by compar-
ing the red curves in Figs. 5a and 5b), thus confirming the
inaccurate rejuvenation policy obtained when considering
the SAR model under the enabling restriction.

3.4.2 Remarks

When applied in our SDN scenario, the time-based policy
rejuvenates the SDN-controller at regular intervals, requir-
ing that only keepalived messages be exchanged, and thus
minimizing the number of monitoring messages within the
control plane. However, periodic rejuvenation is based on
the assumption of constant aging and failure rates, which
typically holds if the workload of the system under analysis
is mostly constant [15]. Therefore, this policy may not be
suitable for SDN controllers subject to variations in traffic
intensity [38], which results in aging steps having non-
Exponential duration, as occurring in our scenario (i.e., du-
ration of transitions error and fail in Fig. 3b).

4 MIXED SOFTWARE REJUVENATION

In this section, we present a novel policy combining time-
based and inspection-based software rejuvenation by refer-
ring to our SDN scenario (Section 4.1), and we define the
policy through a SAR model under the bounded regen-
eration restriction (Section 4.2). Then, we derive optimal
inspection and rejuvenation times (Section 4.3) and we com-
pare dependability-related measures obtained by applying
mixed and time-based rejuvenation, discussing the impact
on the considered SDN scenario (Section 4.4).

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. XX, MONTH YEAR 8

(a) (b)

(c) (d)

Fig. 5. For the model of Fig. 3a (blue line), with underlying MRGP under the enabling restriction, and the model of Fig. 3b (red line), with
underlying MRGP under the bounded regeneration restriction: transient unreliability with rejuvenation period equal to (a) 600min and (b) 420min,
and cumulative transient unavailability with rejuvenation period equal to (c) 600min and (d) 420min.

4.1 Mixed software rejuvenation policy

We define the mixed rejuvenation policy by combining the
time-based and inspection-based policies. Specifically, we
perform up to a fixed number of inspections on the state
of the system, and we use their outcomes to determine the
time to the next inspection or rejuvenation, which we term
the Time To Wait (TTW). When the TTW elapses, the system
state is inspected. As a result of all the inspections executed
since the last rejuvenation or repair, the next rejuvenation
can be triggered immediately (as in inspection-based ap-
proaches) or it can be postponed. After at most a fixed
number of inspections, rejuvenation is always triggered, ir-
respective of the system state (as in time-based approaches).
Equivalently, our mixed rejuvenation strategy can be de-
scribed as a time-based rejuvenation where the rejuvenation
period (initially equal to the maximum delay allowed by the
sequence of all possible inspections) is reduced at runtime
when inspections suggest that the system has aged.

As discussed in Section 2.1, an inspection consists of
a threshold-based diagnostic test on some aging indicator,
and its result can be either positive, i.e., green (G, meaning
that the threshold has not been exceeded), or negative,
i.e., red (R, meaning that the threshold has been exceeded).
An inspection is characterized by specificity γ(t) and sensi-
tivity ρ(t), i.e., γ(t) = TN(t)

TN(t)+FP(t) is the fraction of correctly

detected negatives and ρ(t) = TP(t)
TP(t)+FN(t) is the fraction

of correctly detected positives, where TP(t), FP(t), TN(t),
and FN(t) are the number of true positives, false positive,
true negatives, and false negatives, respectively, detected
at time t since the completion of the last rejuvenation or
repair. Note that both specificity and sensitivity may vary
over time, reflecting the fact that aging effects become more
evident with time, and thus aging states can be detected
more easily [30]. To facilitate the interpretability of results,
in Section 4.4, we perform experiments with both constant
and time-varying values of specificity and sensitivity.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. XX, MONTH YEAR 9

The proposed mixed rejuvenation policy turns out to
be suitable in scenarios like SDN, where monitoring is not
continuous, and thus applying trend detection techniques is
not appropriate. Rather, in these contexts, it is usually more
suitable to implement threshold-based detection techniques
on software aging indicators [15]. However, threshold-based
techniques suffer from temporary peaks in the system work-
load, which could temporarily alter the aging indicators
and lead to incorrect aging estimations. Therefore, given the
dependence of aging indicators on the network transient be-
havior, the repetition of inspections appears reasonable and
convenient to minimize the impact of transient workloads.

4.2 SAR model under bounded regeneration restriction
Fig. 6 provides the STPN model of the mixed rejuvenation
policy, whose underlying stochastic process is an MRP
under the bounded regeneration restriction. As shown in
Fig. 6a, the processes of aging (transition error), failure
(transition failure), failure detection (transition detect),
repair (transition repair), and rejuvenation (transitions
rejFromUp, rejFromErr, and rejFromDown) are mod-
eled as in the STPN of time-based rejuvenation shown in
Fig. 3b. Conversely, the DET transition waitClock model-
ing the rejuvenation period in Fig. 3b is replaced by a sub-
model representing the execution of inspections, as detailed
in Fig. 6b. Thus, to stop the rejuvenation process during
system repair, the update function of transition detect
assigns zero tokens not only to place Clock but also to any
other place that is included in the inspection submodel.

Each inspection has a positive outcome (i.e., true or false
positive) or negative outcome (i.e., true or false negative),
thus yielding four possible outputs. For each inspection in
with n ⩾ 1 and, if n > 1, for each sequence o1, . . . , on−1 of
outcomes of previous inspections i1, . . . , in−1, respectively,
the execution of in is modeled by a random switch between
4 IMM transitions, defining an STPN submodel consisting
of the following elements, as shown in Fig. 6b:

• A DET transition w0 models the TTW T0 between the
last rejuvenation or repair and the first inspection i1.
For the next inspections, a DET transition models the
TTW Tn−1 between inspections in−1 and in ∀n > 1,
and its name encodes the sequence of outcomes o1,
. . . , on−1, e.g., wG and wR model the TTW between i1
and i2 if o1 = G and o1 = R, respectively.

• A place models the inspection execution: for the first
inspection i1, place S; for subsequent inspections, a
place whose name encodes the sequence of outcomes
o1, . . . , on−1 ∀n > 1, e.g., SG and SR for inspection i2
and outcome o1 = G and o1 = R, respectively.

• Two places model the outcomes G and R of inspec-
tion in and their names encode such outcomes and,
for inspections after the first one, the sequence of out-
comes o1, . . . , on−1 of previous inspections ∀n > 1,
e.g., places G and R for inspection i1, places GG and
GR for inspection i2 and outcome o1 = G, and places
RG and RR for inspection i2 and outcome o1 = R.

• Four IMM transitions model the inspection outputs
(i.e., true/false positive, true/false negative). They
have the place modeling the inspection execution
as input place, the place modeling the represented

inspection outcome as output place, and their names
encode the sequence of observed inspection out-
comes o1, . . . , on), e.g., for inspection i1, transitions
sTP, sFP, sTN, and sFN represent a true positive, a
false positive, a true negative, and a false negative,
respectively, while for inspection i2 and inspection
outcome o1 = G, transitions sGTP, sGFP, sGTN, and
sGFN represent a true positive, a false positive, a true
negative, and a false negative, respectively.
The two concurrent transitions modeling a true pos-
itive and a false negative (e.g., sTP and sFN, respec-
tively) have enabling function “Up==1” and prob-
abilistic weight P and (1 − P), respectively, where
P = ρ(

∑n−1
k=0 Tk) is the sensitivity value at the time of

inspection in given the outcomes o1, . . . , on−1 (T0 be-
ing the TTW between the last rejuvenation or repair
and the first inspection i1, and Tk the TTW between
inspections ik−1 and ik ∀ k > 1). Similarly, the two
concurrent transitions modeling a true negative and
a false positive (e.g., sTN and sFP, respectively) have
enabling function “Up==0” and probabilistic weight
Γ and (1 − Γ), respectively, where Γ = γ(

∑n−1
k=0 Tk)

is the specificity value at the time of inspection in
given the outcomes o1, . . . , on−1.

Therefore, the submodel of inspection in consists of:

• 2n−1 DET transitions modeling: i) the time between
the last rejuvenation or repair and inspection i1 if
n = 1, and ii) the TTW between in−1 and in for
each possible sequence of outcomes o1, . . . , on−1 for
inspections i1, . . . , in−1, respectively, if n > 1;

• 2n−1 places modeling the execution of: i) inspec-
tion i1 if n = 1, and ii) inspection in for each possible
sequence of outcomes o1, . . . , on−1 for inspections i1,
. . . , in−1, respectively, if n > 1;

• 2n+1 IMM transitions modeling the four inspection
outputs for each possible sequence of outcomes o1,
. . . , on−1 for inspections i1, . . . , in−1, respectively;

• 2n places modeling the two inspection outcomes for
each possible sequence of outcomes o1, . . . , on−1 for
inspections i1, . . . , in−1, respectively.

• 2N DET transitions modeling the TTW between in-
spection iN and the next rejuvenation for each pos-
sible sequence of outcomes o1, . . . , oN for inspec-
tions i1, . . . , iN , respectively.

Note that, despite the significant number of transitions,
the maximum degree of concurrency between non-EXP
transitions is equal to two for the inspection submodel, and
thus it is equal to three for the whole model, which makes
regenerative analysis based on the method of stochastic state
classes viable [19], [20]. In fact, along each possible sequence
of observed inspection outcomes, a single DET transition
modeling a TTW is enabled at a time, and only two IMM
transitions modeling a random switch between inspection
outcomes are enabled at a time. Note that the analysis is
anyway challenging due to the possible significant length
of behaviors (in terms of transition firings) between con-
secutive regeneration points (especially after the firing of
transition error). Also note that we need to compute all
the TTW values only in the case that we need to implement
a completely pre-calculated rejuvenation policy.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. XX, MONTH YEAR 10

rejFromUp

error

[1,4] expol

Detected

detect

Down

[0,!] expol

[0,!] expol

Clock

rejFromErr

repair

[2,16] expol

Rej

Err

[0,4] uni

Up
[1,2] expol

fail

u

u

Inspection 1

Inspection 2

Inspection N

Times before Rejuvenation

2
N-1

input transitions

rejFromDown

(a)

(b)

Fig. 6. (a) STPN model of mixed rejuvenation and (b) detail on the submodel representing inspections on the system state.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. XX, MONTH YEAR 11

4.3 Optimal inspection and rejuvenation times

We define an inductive iterative approach to determine the
TTWs of the model of Fig. 6 (i.e., the values of the DET
transitions). Specifically, we consider the transient unrelia-
bility u(t, Ot) up to the next inspection given the sequence
of observations since the last rejuvenation or repair:

u(t, Ot) := P (system failure by t |Ot) (2)

where Ot is the sequence of observations taken since when
the last rejuvenation or repair has been completed up to
time t, each observation consisting of an inspection outcome
and an inspection time. We derive the TTW as the maximum
time T for which u(t, Ot) per time unit is not larger than a
given threshold ϵ, modeling the accepted system failure rate:

u(t, Ot) ⩽ ϵ · t. (3)

At step 1 (base case of the inductive process), we deter-
mined the TTW between the completion of the last rejuvena-
tion or repair and the first inspection i1, i.e., the value T0 of
the DET transition w0 in Fig. 6. Given that no observation is
taken in the time interval [0, T0), u(t, Ot) can be derived by
performing regenerative transient analysis of the model up
to a time limit U with stop condition “Down” and computing
the reward “Down”. Then, T0 is derived as the minimum
between U and the maximum time t satisfying Eq. (3).

At step n > 1 (inductive case), the TTW between inspec-
tions in−1 and in is determined for each possible sequence
of outcomes o1, . . . , on−1 of inspections i1, . . . , in−1, respec-
tively. Let T1, . . . , Tn−1 be the sequence of TTWs computed
for o1, . . . , on−1 during the previous steps of the procedure.
Then, u(t, Ot) can be derived by performing regenerative
transient analysis of the model up to time limit U with
stop condition “Down||p1||...||pn− 1||sn” (where pi
denotes the place encoding the complementary outcome of
o1, . . . , oi ∀ i ∈ {1, . . . , n − 1} and sn denotes the place
encoding the execution of inspection in given the outcome
sequence o1, . . . , on−1), e.g., if o1 = G, o2 = R, and o3 = G,
then the stop condition is “Down||R||GG||GRR ||SGRG”.
Finally, Tn is derived as min{U, tmax}−

∑n−1
k=0 Tk where tmax

is the maximum time satisfying Eq. (3).
The analysis time limit U is the time beyond which

rejuvenation is expected to be no longer effective. It is
estimated as the expected value plus the standard deviation
of the time-to-failure. In particular, let µerror and µfail be
the expected values of the PDFs of transitions error and
fail, respectively, and let σerror and σfail be their standard
deviations, respectively. Then, the expected value and the
variance of the time-to-failure are µ̄ = µerror + µfail and
σ̄2 = σ2

error + σ2
fail, respectively. Thus, we set the analysis

time limit as U := µ̄ + σ̄, and we guarantee that up
to N inspections are performed within time U (since the
completion of the last rejuvenation or repair). In fact, if
the TTW is selected equal to the analysis time limit, then
the TTW of the subsequent inspections are all set equal
to 0, indicating that such inspections are not necessary
to improve dependability-related attributes of the system.
Otherwise, if the TTW is never selected equal to the analysis
time limit for a sequence of observations, then the sum of the
TTWs (i.e., the time elapsed between the last rejuvenation or
repair and the next rejuvenation) is strictly lower than U .

Fig. 7. Line y = ϵ · t with ϵ = 10−5 and, for the model of Fig. 6, transient
unreliability u(t, Ot) given a sequence of five successful observations,
for constant values of specificity γ and sensitivity ρ in {0.9,0.99}.

Fig. 7 shows u(t, Ot) for a sequence of five successful
observations (i.e., having outcomes o1 = . . . = o5 = G)
since the last rejuvenation or repair, and constant values of
specificity γ and sensitivity ρ in {0.9, 0.99}. The angular
points of u(t, Ot), i.e., the times at which it intersects the
straight line y = ϵ · t, with ϵ = 10−5, represent the optimal
selected TTWs. The first TTW T0 is the same (i.e., 93min)
regardless of the values of γ and ρ, given that no observation
has been observed yet. Then, with the same value of ρ, larger
values of γ yield larger TTWs, given the increased capacity
in detecting aged states, e.g., for ρ = 0.99, T1 is equal to
44min for γ = 0.9 and 58min for γ = 0.99. Conversely, with
the same value of γ, larger values of ρ yield equal or slightly
larger TTWs, due to the unchanged ability to detect aging,
e.g., for γ = 0.99, T1 is equal to 58min for both ρ = 0.9
and ρ = 0.99. After the fifth and last inspection, the TTW
T5 (modeling the time to the next rejuvenation) is set equal
to difference between U = µerror + µfail +

√
σ2
error + σ2

fail =

1706min and the sum of the previous TTWs, i.e.,
∑4

k=0 Tk.

4.4 Dependability measures of optimal solutions

In this section, we derive the optimal inspection and reju-
venation times for both constant and time-varying values of
specificity and sensitivity of diagnostic tests (Section 4.4.1),
we use them to compute dependability measures (Sec-
tion 4.4.2), and we discuss the impact on our SDN scenario
(Section 4.4.3). In all experiments, we consider ϵ = 10−5.

4.4.1 Optimal inspection and rejuvenation times
Table 2 reports the TTWs computed through the approach
of Section 4.3 for the model of Fig. 6, with N = 4 inspections
and constant specificity γ and sensitivity ρ of diagnostic
tests taking values in {0.9, 0.95, 0.99}.

First, we consider γ equal to ρ (first three columns).
As γ and ρ increase, a positive test outcome (G) is more
likely to be true and consequently the next inspection is
postponed by increasing the TTWs until the time bound
U = 1706 is reached and rejuvenation is triggered. Next,
we consider cases where γ ̸= ρ. We observe that, when

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. XX, MONTH YEAR 12

γ = 0.90, TTWs are similar for ρ = 0.90 (first column)
and ρ = 0.99 (fourth column); when γ = 0.99, TTWs
are similar for ρ = 0.90 (third column) and ρ = 0.99
(fifth column). Sensitivity ρ has lower impact on TTWs than
γ since the misclassification of a positive state (i.e., an R
inspection outcome when the system has not aged) triggers
a rejuvenation, resulting in low unreliability. Independently
of the values of γ and ρ, if an inspection yields a negative
outcome (i.e., R), a new inspection is immediately repeated
(i.e., for transitions ending with “R”, the optimal TTW is 0).

Note that γ and ρ could be different for different inspec-
tions, or even depend on previous outcomes. We consider
two cases with time-varying values, where both γ(t) and
ρ(t) are equal to p ∈ {0.5, 0.8} up to time 100min, linearly

TABLE 2
TTWs (expressed in min) for the model of Fig. 6 with N = 4 inspections

and constant specificity γ and sensitivity ρ of diagnostic tests.

Trans. γ = 0.90
ρ = 0.90

γ = 0.95
ρ = 0.95

γ = 0.99
ρ = 0.99

γ = 0.90
ρ = 0.99

γ = 0.99
ρ = 0.90

w 93 93 93 93 93

wG 42 51 58 44 58

wR 0 0 0 0 0

wGG 54 58 62 54 61

wGR 0 0 0 0 0

wRG 111 219 1613 118 1613

wRR 0 0 0 0 0

wGGG 59 65 70 62 70

wGGR 0 0 0 1 0

wGRG 158 272 1555 162 1555

wGRR 0 0 0 0 0

wRGG 247 1394 0 258 0

wRGR 0 0 0 0 0

wRRG 233 1613 1613 261 1613

wRRR 0 0 0 0 0

wGGGG 74 79 85 76 85

wGGGR 0 0 0 0 0

wGGRG 174 328 1493 185 1494

wGGRR 0 0 0 0 0

wGRGG 378 1290 0 404 0

wGRGR 0 0 0 0 0

wGRRG 493 1562 1555 543 1555

wGRRR 1 1 0 0 0

wRGGG 1255 0 0 1237 0

wRGGR 0 0 0 0 0

wRGRG 1502 1394 0 1495 0

wRGRR 0 0 0 0 0

wRRGG 1380 0 0 1352 0

wRRGR 1 0 0 0 0

wRRRG 398 1613 1613 503 1613

wRRRR 0 0 0 0 0

increase from time 100min to 200min until reaching 0.95,
and are equal to 0.95 after 200min, i.e.,

γ(t) =

p ∀ t ∈ [0, 100)
p+ t−100

200−100 (0.95− p) ∀ t ∈ [100, 200)
0.95 ∀ t ∈ (200,∞)

(4)

and ρ(t) = γ(t). Note that this trend represents the fact
that the effectiveness of diagnostic tests based on aging
indicators increases over time [30]. Other functions of time
could be analyzed, including different trends for γ(t) and
ρ(t), with no impact on the computational complexity of
the proposed approach. The obtained TTWs are reported in
Table 3. When p = 0.8 (second column), γ and ρ increment
shortly after the initial TTW T0 = 93min, reaching 0.95 after
three inspections; compared to a constant γ = ρ = 0.95
in Table 2, the trend is similar but TTWs are much lower

TABLE 3
TTWs (expressed in min) for the model of Fig. 6 with N = 4 inspections
and time-varying specificity γ(t) and sensitivity ρ(t) of diagnostic tests.

Trans. γ(t) = ρ(t) ∈ [0.5, 0.95] γ(t) = ρ(t) ∈ [0.8, 0.95]

w 93 93

wG 0 21

wR 0 0

wGG 11 54

wGR 11 1

wRG 11 47

wRR 11 0

wGGG 54 66

wGGR 48 1

wGRG 54 124

wGRR 48 2

wRGG 54 140

wRGR 48 1

wRRG 54 91

wRRR 48 0

wGGGG 135 90

wGGGR 2 0

wGGRG 132 204

wGGRR 2 0

wGRGG 135 253

wGRGR 2 1

wGRRG 132 301

wGRRR 2 11

wRGGG 135 262

wRGGR 2 0

wRGRG 132 517

wRGRR 2 0

wRRGG 135 701

wRRGR 2 0

wRRRG 132 160

wRRRR 2 0

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. XX, MONTH YEAR 13

due to the inaccuracy of the initial inspection outcomes.
When p = 0.5 (first column), the TTW after each inspection
is nearly the same up to the third test, regardless of the
outcome, since G and R are equiprobable up to time 100min.
Then, γ and ρ start increasing, and a trend similar to the case
with p = 0.8 is observed, though with even lower TTWs due
to the higher inaccuracy of the initial test outcomes.

4.4.2 Unreliability and cumulative unavailability
We evaluate the steady-state unavailability and unreliability
with mixed rejuvenation, varying the number of inspections
in {1, 2, . . . , 8} and considering constant and time-varying
specificity γ and sensitivity ρ of diagnostic tests. Fig. 8
shows the results for γ = ρ ∈ {0.9, 0.95, 0.99}, while Fig. 9
considers γ(t) and ρ(t) as defined in Eq. (4) for p = 0.5 and
p = 0.8. To this end, we perform regenerative steady-state
analysis [20] of the model of Fig. 6 using the TTWs derived
in Section 4.3 through the SIRIO library of the ORIS tool.
The steady-state unavailability can be derived by computing

(a)

(b)

Fig. 8. For mixed rejuvenation (model of Fig. 6), with different number
of inspections and constant values of specificity γ and sensitivity ρ of
diagnostic tests, and for time-based rejuvenation (model of Fig. 3b):
(a) steady-state unavailability and (b) steady-state unreliability.

the reward “If(Down+Detected>0||Rej>0,1,0)”, and
steady-state unreliability by computing the reward “Down”.

As shown in Fig. 8a, for mixed rejuvenation, the steady-
state unavailability almost decreases as the number of in-
spections increases. In fact, with a larger number of inspec-
tions, rejuvenation become more effective, being triggered in
very short times if the system is aged, and gradually post-
poned if it is still correctly working. With N ⩽ 3 and N ⩾ 6,
larger values of γ and ρ yield lower unavailability (blue,
green, and orange curves), given the better capacity to detect
aging effects and avoid unexpected failures. With N = 4
and N = 5, lower values of γ and ρ yield lower steady-
state unavailability, which can be explained as an attempt
to counterbalance the lower confidence in the inspection
outcomes, i.e., lower TTWs yield more frequent inspections,
thus increasing the probability of detecting aging during
the tests and triggering rejuvenation before failure detection
and consequent repair. As discussed in Section 4.4.1, with

(a)

(b)

Fig. 9. For mixed rejuvenation (model of Fig. 6), with different number
of inspections and time-varying specificity γ(t) and sensitivity ρ(t) of
diagnostic tests, and for time-based rejuvenation (model of Fig. 3b):
(a) steady-state unavailability and (b) steady-state unreliability.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. XX, MONTH YEAR 14

the same value of γ, variations of ρ yield negligible effects
(the gray curve nearly overlaps with the blue curve, and the
pink curve nearly overlaps with the orange curve).

In Fig. 9a, a trend similar to that of Fig. 8a is observed
with N ⩽ 4, with slightly larger unavailability (with respect
to the case with γ = ρ = 0.95 of Fig. 8a) mainly due to the
initially lower specificity values. With a larger number of
inspections, the last inspections are performed in both cases
with γ = 0.95, yielding comparable unavailability.

As shown in Fig. 8b, for mixed rejuvenation, the steady-
state unreliability increases with the number of inspections,
given that a larger number of inspections yields larger TTW
values, delaying rejuvenation and increasing the failure risk.
We remark that the transient unreliability per time unit
is guaranteed to be lower than a given threshold for any
combination of inspection outcomes. From N = 5 on, larger
values of γ and ρ yield lower unreliability, as expected given
the better capacity to detect aging effects. Note that also the
unreliability is sensitive to changed of γ rather than ρ.

In Fig. 9b, a trend similar to that of Fig. 8b is observed,
with almost slightly larger unreliability (with respect to the
case with γ = ρ = 0.95 of Fig. 8b) mainly due to the initially
lower specificity values. With p = 0.5 (yellow curve), unre-
liability is slightly lower than with p = 0.8 (violet curve),
since lower TTWs yield more frequent rejuvenation.

Overall, using N = 4 inspections, mixed rejuvenation
reaches a trade-off between steady-state unavailability and
unreliability, achieving slightly larger unavailability with
respect to time-based rejuvenation while outperforming it
in terms of unreliability, which can be nearly halved.

4.4.3 Remarks
In the considered SDN scenario, the proposed mixed re-
juvenation policy turns out to be particularly suitable for
keeping the monitoring overhead under control, as it en-
ables deciding in advance an arbitrary number of diagnostic
tests to be performed on an SDN-controller between two
rejuvenation actions. Moreover, unlike the time-based reju-
venation, the mixed rejuvenation is more robust to workload
variations that indirectly alter the aging speed and thus also
the failure rate of the SDN-controller, which can in fact be
managed by the inspection. Furthermore, the possibility to
perform multiple diagnostic tests between two rejuvenation
operations make this strategy robust also to sudden load
peaks, which could in fact lead to altered values of the aging
indicators and thus to altered test results.

5 CONCLUSIONS

We presented a mixed software rejuvenation policy, which
combines time-based and inspection-based rejuvenation, us-
ing warnings emitted by diagnostic tests to trigger early re-
juvenation. The policy is defined by a non-Markovian model
with an underlying MRGP under the bounded regeneration
restriction, enabling the definition of an efficient procedure
to determine the time to the next inspection or rejuvenation,
computed as the time at which the transient unreliability per
time unit up to the next test, given the test outcomes since
the last rejuvenation, equals a given threshold.

Experimental results show that, with respect to the time-
based rejuvenation policy, the mixed rejuvenation policy im-
proves the system reliability while reducing its availability,

which anyway comes with an acceptable downtime cost.
Results also show that the SIRIO library of the ORIS tool
can be effectively used to design and evaluate SAR models
with an underlying MRGP beyond the enabling restriction,
supporting the definition of exponomial distribution that fit
multiple statistics of observed durations (e.g., to preserve
the sample mean and sample variance) as well as enabling
the selection of optimal inspection and rejuvenation times.

The proposed rejuvenation policy is effective in counter-
acting software aging in emerging computing systems like
SDN. The approach is open to various extensions facilitating
applicability to other contexts. In particular, the concur-
rency structure of the model could be changed to define
different aging, failure, and repair processes, e.g., multiple
steps from working to failure states. Moreover, the approach
could be extended into a hybrid method by integrating
measurement-based techniques to estimate stochastic pa-
rameters of the model from observations, e.g., time series
encoding empirical data on the aging phenomenon.

ACKNOWLEDGMENTS

This work was partially supported by the European Union
under the Italian National Recovery and Resilience Plan
(NRRP) of NextGenerationEU, partnership on “Telecommu-
nications of the Future”(PE00000001-program “RESTART”).

The authors would like to thank Prof. Francesco Chiti
(University of Florence) for fruitful discussions about SDNs.

REFERENCES

[1] J. Alonso, R. Matias, E. Vicente, A. Maria, and K. S. Trivedi. A com-
parative experimental study of software rejuvenation overhead.
Performance Evaluation, 70(3):231–250, 2013.

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic
concepts and taxonomy of dependable and secure computing.
IEEE Trans. on Dependable and Secure Computing, 1(1):11–33, 2004.

[3] J. Bai, X. Chang, F. Machida, L. Jiang, Z. Han, and K. S. Trivedi.
Impact of service function aging on the dependability for MEC
service function chain. IEEE Trans. on Dependable and Secure
Computing, 2022.

[4] Y. Bao, X. Sun, and K. S. Trivedi. A workload-based analysis
of software aging, and rejuvenation. IEEE Trans. on Reliability,
54(3):541–548, 2005.

[5] M. Biagi, L. Carnevali, M. Paolieri, T. Papini, and E. Vicario. Ex-
ploiting non-deterministic analysis in the integration of transient
solution techniques for Markov regenerative processes. In Int.
Conf. on Quantitative Evaluation of Sys., pages 20–35. Springer, 2017.

[6] L. Carnevali, R. German, F. Santoni, and E. Vicario. Compositional
Analysis of Hierarchical UML Statecharts. IEEE Trans. on Software
Engineering, 48(12):4762–4788, 2021.

[7] L. Carnevali, M. Paolieri, R. Reali, L. Scommegna, and E. Vicario.
A Markov Regenerative Model of Software Rejuvenation Beyond
the Enabling Restriction. In Int. Symp. on Software Reliability
Engineering Workshops, pages 138–145. IEEE, 2022.

[8] V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S.
Trivedi, K. Vaidyanathan, and W. P. Zeggert. Proactive manage-
ment of software aging. IBM Journal of Research and Development,
45(2):311–332, 2001.

[9] D. Chen and K. S. Trivedi. Closed-form analytical results for
condition-based maintenance. Reliability Engineering & System
Safety, 76(1):43–51, 2002.

[10] D. Chen and K. S. Trivedi. Optimization for condition-based main-
tenance with semi-Markov decision process. Reliability engineering
& system safety, 90(1):25–29, 2005.

[11] H. Choi, V. G. Kulkarni, and K. S. Trivedi. Markov regenerative
stochastic Petri nets. Performance evaluation, 20(1-3):337–357, 1994.

[12] D. Cotroneo, R. Natella, and R. Pietrantuono. Predicting aging-
related bugs using software complexity metrics. Performance
Evaluation, 70(3):163–178, 2013.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. XX, MONTH YEAR 15

[13] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo. A survey of
software aging and rejuvenation studies. ACM Journal on Emerging
Technologies in Computing Systems, 10(1):1–34, 2014.

[14] T. Dohi, K. Goseva-Popstojanova, and K. S. Trivedi. Statistical
non-parametric algorithms to estimate the optimal software reju-
venation schedule. In Proceedings. 2000 Pacific Rim International
Symposium on Dependable Computing, pages 77–84. IEEE, 2000.

[15] T. Dohi, K. S. Trivedi, and A. Avritzer. Handbook of Software Aging
and Rejuvenation: Fundamentals, Methods, Applications, and Future
Directions. World Scientific, 2020.

[16] S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi. Analysis of
software rejuvenation using Markov regenerative stochastic Petri
net. In Proceedings of Sixth International Symposium on Software
Reliability Engineering. ISSRE’95, pages 180–187. IEEE, 1995.

[17] M. Grottke, R. Matias, and K. S. Trivedi. The fundamentals of
software aging. In IEEE Int. Conf. on software reliability engineering
workshops (ISSRE Wksp), pages 1–6. IEEE, 2008.

[18] M. Grottke, A. P. Nikora, and K. S. Trivedi. An empirical investiga-
tion of fault types in space mission system software. In IEEE/IFIP
Int. Conf. on dependable sys. & networks, pages 447–456. IEEE, 2010.

[19] A. Horváth, M. Paolieri, L. Ridi, and E. Vicario. Transient analysis
of non-Markovian models using stochastic state classes. Perfor-
mance Evaluation, 69(7-8):315–335, 2012.

[20] A. Horváth, M. Paolieri, and E. Vicario. Equilibrium analysis of
Markov regenerative processes. In Proceedings of QEST, volume
14287 of LNCS, pages 172–187. Springer, 2023.

[21] M. M. Hosseini, R. M. Kerr, and R. B. Randall. An inspection
model with minimal and major maintenance for a system with
deterioration and Poisson failures. IEEE Trans. on Reliability,
49(1):88–98, 2000.

[22] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton. Software
rejuvenation: Analysis, module and applications. In Twenty-fifth
international symposium on fault-tolerant computing. Digest of papers,
pages 381–390. IEEE, 1995.

[23] K. Jia, X. Yu, C. Zhang, W. Hu, D. Zhao, and J. Xiang. Software
aging prediction for cloud services using a gate recurrent unit
neural network model based on time series decomposition. IEEE
Trans. on Emerging Topics in Computing, 2023.

[24] J. M. Kizza. Internet of things: growth, challenges, and security. In
Guide to Computer Network Security, pages 557–573. Springer, 2024.

[25] V. G. Kulkarni. Modeling and analysis of stochastic systems. Chapman
and Hall/CRC, 2016.

[26] J. Liu and L. Meng. Integrating artificial bee colony algorithm
and bp neural network for software aging prediction in IoT
environment. IEEE Access, 7:32941–32948, 2019.

[27] F. Machida, D. S. Kim, and K. S. Trivedi. Modeling and analysis of
software rejuvenation in a server virtualized system with live vm
migration. Performance Evaluation, 70(3):212–230, 2013.

[28] F. Machida and N. Miyoshi. An optimal stopping problem for
software rejuvenation in a job processing system. In IEEE Int.
Symp. on Softw. Rel. Eng. Workshops, pages 139–143. IEEE, 2015.

[29] F. Machida, V. F. Nicola, and K. S. Trivedi. Job completion time on
a virtualized server with software rejuvenation. ACM Journal on
Emerging Technologies in Computing Systems, 10(1):1–26, 2014.

[30] R. Matias, A. Andrzejak, F. Machida, D. Elias, and K. Trivedi.
A systematic differential analysis for fast and robust detection
of software aging. In 2014 IEEE 33rd International Symposium on
Reliable Distributed Systems, pages 311–320. IEEE, 2014.

[31] R. Pietrantuono and S. Russo. A survey on software aging and
rejuvenation in the cloud. Software Quality Journal, 28(1):7–38, 2020.

[32] L. V. Ruchel, R. C. Turchetti, and E. T. de Camargo. Evaluation
of the robustness of SDN controllers ONOS and ODL. Computer
Networks, 219:109403, 2022.

[33] B. Tola, Y. Jiang, and B. E. Helvik. Model-driven availability
assessment of the NFV-MANO with software rejuvenation. IEEE
Trans. on Network and Service Management, 18(3):2460–2477, 2021.

[34] D. Trihinas, G. Pallis, and M. D. Dikaiakos. Low-cost adaptive
monitoring techniques for the internet of things. IEEE Trans. on
Services Computing, 14(2):487–501, 2018.

[35] K. Vaidyanathan, R. E. Harper, S. W. Hunter, and K. S. Trivedi.
Analysis and implementation of software rejuvenation in cluster
systems. In ACM SIGMETRICS Int. Conf. on Measurement and
modeling of computer systems, pages 62–71, 2001.

[36] E. Vicario, L. Sassoli, and L. Carnevali. Using stochastic state
classes in quantitative evaluation of dense-time reactive systems.
IEEE Trans. on Software Engineering, 35(5):703–719, 2009.

[37] P. Vizarreta, P. Heegaard, B. Helvik, W. Kellerer, and C. M.
Machuca. Characterization of failure dynamics in SDN controllers.
In Int. work. on resilient net. design and model., pages 1–7. IEEE, 2017.

[38] P. Vizarreta, C. Sieber, A. Blenk, A. Van Bemten, V. Ramachandra,
W. Kellerer, C. Mas-Machuca, and K. Trivedi. ARES: A Frame-
work for Management of Aging and Rejuvenation in Softwarized
Networks. IEEE Trans. Net. and Serv. Manag., 18(2):1389–1400, 2020.

[39] D. Wang, W. Xie, and K. S. Trivedi. Performability analysis
of clustered systems with rejuvenation under varying workload.
Performance Evaluation, 64(3):247–265, 2007.

[40] C. Weng, J. Xiang, S. Xiong, D. Zhao, and C. Yang. Analysis of
software aging in Android. In Int. Symp. on Software Reliability
Engineering Workshops (ISSREW), pages 78–83. IEEE, 2016.

[41] W. Whitt. Approximating a Point Process by a Renewal Process, I:
Two Basic Methods. Op. Res., 30(1):125–147, 1982.

[42] H. Yahyaoui, M. F. Zhani, O. Bouachir, and M. Aloqaily. On
minimizing flow monitoring costs in large-scale software-defined
network networks. International Journal of Network Management,
33(2):e2220, 2023.

[43] M.-L. Yin, J. E. Angus, and K. S. Trivedi. Optimal preventive
maintenance rate for best availability with hypo-exponential fail-
ure distribution. IEEE Trans. on reliability, 62(2):351–361, 2013.

[44] Y. Yu, X. Li, X. Leng, L. Song, K. Bu, Y. Chen, J. Yang, L. Zhang,
K. Cheng, and X. Xiao. Fault management in software-defined
networking: A survey. IEEE Communications Surveys & Tutorials,
21(1):349–392, 2018.

[45] J. Zhao, Y. Wang, G. Ning, K. S. Trivedi, R. Matias Jr, and K.-Y.
Cai. A comprehensive approach to optimal software rejuvenation.
Performance Evaluation, 70(11):917–933, 2013.

Laura Carnevali is Associate Professor of Com-
puter Science at the University of Florence, Italy,
where she received the Ph.D. in Informatics,
Multimedia, and Telecommunications Engineer-
ing (2010). Her research activities are mainly
focused on quantitative evaluation of stochastic
models, with specific application to the analysis
of dependability-related attributes of concurrent
timed systems in various domains.

Marco Paolieri is a Senior Research Associate
at the University of Southern California, Los
Angeles, USA. He received his Ph.D. in Com-
puter Science, Systems, and Telecommunica-
tions (2015) and his M.S. in Computer Engineer-
ing (2011) from the University of Florence, Italy.
His research interests focus on stochastic mod-
eling and quantitative evaluation of performance
and reliability in concurrent and distributed sys-
tems.

Riccardo Reali is a post-doctoral researcher at
the University of Florence, where he received
the bachelor and master degrees in Informa-
tion Engineering and the Ph.D. degree in Smart
Computing. His scientific activity is focused on
quantitative analysis of non-Markovian through
compositional and heuristics methods, software
engineering methodologies and software archi-
tectures.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. XX, MONTH YEAR 16

Leonardo Scommegna is Assistant Professor
of computer science with the Department of In-
formation Engineering, University of Florence,
Italy, where he obtained his PhD in Smart Com-
puting in 2023. His research interests lie in the
area of software engineering, with particular em-
phasis on software architectures, software test-
ing, and model-based development.

Enrico Vicario is a Professor of Computer Sci-
ence and Engineering and Head of the Depart-
ment of Information Engineering at the Univer-
sity of Florence, Italy. His research is in the area
of Software Engineering, with a present focus
on quantitative evaluation of stochastic models,
software architecture and methodologies, and
on their connection through Model Driven Engi-
neering practices.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. XX, NO. XX, MONTH YEAR 17

APPENDIX: ANALYSIS OF MRGP PROCESSES

This appendix summarizes the use of stochastic state classes
for the transient and steady-state analysis of STPN models
with underlying MRGP processes [19], [20].

Stochastic State Classes. A stochastic state class [36] en-
codes the marking of an STPN (i.e., the logical state of
the underlying stochastic process) and the joint PDF of the
remaining times to fire of enabled transitions (determining
the next change of the logical state) and of the absolute
time of the previous transition firing (which we call age).
Starting from an initial stochastic state class in which times
to fire are distributed independently, a transient tree [19] is
computed by adding an edge Σ

γ,µ
==⇒ Σ′ for each transition

firing with nonzero probability: the edge is labeled with
the transition name γ and with the firing probability µ; it
connects the current stochastic state class Σ with a new
one Σ′, in which the times to fire of persistent transitions
are decreased by the previous sojourn time, and thus be-
come mutually dependent random variables. In so doing,
a transient tree unfolds the state class graph of an STPN
and endows it with a probability measure, providing the
stochastic characterization of a continuous set of executions.

Transient Analysis. From stochastic state classes, quantita-
tive measures can be computed for the transient regime of
the STPN. Given an initial stochastic state class Σ0 and a
sequence of transition firings γ1, γ2, . . . , γn, the sequence of
stochastic state classes Σ0

γ1,µ1
====⇒ Σ1

γ2,µ2
====⇒ · · · γn,µn

====⇒ Σn

with Σi = ⟨mi, Di, fi⟩ for i = 1, . . . , n provides the proba-
bility µi of each firing event, and the resulting marking mi

and joint PDF fi (over the support Di) for τage and for the
times to fire τ⃗ after the firing. The probability of reaching
Σn within time t is

preach(Σn, t) =

(
n∏

i=1

µi

)∫
D⩽t

n

fn(xage , x1, . . . , xn) dxage dx⃗

(5)

where D⩽t
n = {⟨xage , x⃗⟩ ∈ Dn | xage ⩽ t} imposes

that the firing of γn happened within time t. Similarly, the
probability that, at time t, the STPN has fired all and only
the transitions γ1, γ2, . . . , γn leading to Σn, is

pin(Σn, t) =

(
n∏

i=1

µi

)∫
D@t

n

fn(xage , x1, . . . , xn) dxage dx⃗

(6)

where D@t
n = {⟨xage , x⃗⟩ ∈ D⩽t

n | xk + xage >
t for all k ̸= age} imposes that γn fired within time t and
the next transition firing happened strictly after time t (the
marking at time t is thus mn).

Regenerative transient analysis [19] is a technique available
in the ORIS tool that is able to exploit these measures
and the repetitive structure of MRGP processes. Instead of
unfolding all the sequences of events within time tmax in a
single transient tree, multiple smaller trees are computed to
analyze the transient behavior between each pair of regener-
ation points [25], selected transition firings after which future
evolution is independent of past history and determined by
the specific regeneration value. Transient measures between
regeneration points are encoded in a local kernel and a global

kernel, and then combined through a system of Markov
renewal equations to compute transient probabilities Pij(t)
for each marking j ∈ M, initial regeneration i, and time
0 ⩽ t ⩽ tmax . In particular, if R is the set of reachable re-
generations, and INNER(i) and LEAVES(i) are, respectively,
the stochastic state classes of inner nodes and leaf nodes in
the transient tree enumerated from regeneration i ∈ R and
limited to the next regeneration, then

P(t) = L(t) +

∫ t

0
dG(u)P(t− u) (7)

where Pij(t) := P{M(t) = j | X0 = i}, and, denoting
the initial regeneration as X0, the next one as X1, and the
time between the two as T1, the local and global kernels are
evaluated, respectively, as

Lij(t) := P{M(t) = j, T1 > t | X0 = i}
=

∑
Σ∈INNER(i) s.t.
Σ has marking j

pin(Σ, t)

Gik(t) := P{X1 = k, T1 ⩽ t | X0 = i}
=

∑
Σ∈LEAVES(i) s.t.

Σ has regeneration k

preach(Σ, t)

for all i, k ∈ R, j ∈ M, and 0 ⩽ t ⩽ tmax . The system
of integral equations of Eq. (7) is solved by the ORIS
Tool in the time domain using Newton–Cotes formulas:
for a given step size h, P is evaluated numerically at all
t = 0, h, 2h, . . . , ⌈ tmax

h ⌉h from the value of L(t) and the
values of G and P at previous time instants [19].

Steady-State Analysis. When the underlying stochastic pro-
cess of the model is an MRP (possibly with concurrent,
generally-distributed timers) that reaches regenerations in
a bounded number of transition firings, also steady-state
analysis can be performed using the ORIS tool [20]. Visit
frequencies νi are computed for each regeneration i ∈ R
by solving the linear system ν⃗ = ν⃗G(∞) and then com-
bined with mean sojourn times Tij =

∫∞
0 Lij(t) for all

i ∈ R and j ∈ M to obtain steady-state probabilities
πj = (

∑
i∈R νi Tij)/(

∑
i∈R,m∈M νi Tim) [25].

	Introduction
	Motivation and challenges
	Related works
	Contribution

	Emerging computing scenario
	System model
	Stochastic parameters

	Time-based software rejuvenation
	Time-based software rejuvenation policy
	SAR model under bounded regeneration restriction
	Optimal rejuvenation period
	Dependability measures of optimal solutions

	Mixed software rejuvenation
	Mixed software rejuvenation policy
	SAR model under bounded regeneration restriction
	Optimal inspection and rejuvenation times
	Dependability measures of optimal solutions

	Conclusions
	References
	Biographies
	Laura Carnevali
	Marco Paolieri
	Riccardo Reali
	Leonardo Scommegna
	Enrico Vicario

