
Graphical Abstract
OREO: A Tool-Supported Approach for Offline Run-time Monitoring and Fault-Error-Failure
Chain Localization
Leonardo Scommegna,Benedetta Picano,Roberto Verdecchia,Enrico Vicario

Step 1

Plug-in OREO to a system
to be monitored

Step 2a

Execute system under
normal conditions

observing

Step 2b
OREO observes

system execution and
extracts timelines

Step 3

Timeline analysis via
profiling features

Automated /
manual input

OREO
tool

System to be
monitored Execution 

timelines

OREO
analysis
results



Highlights
OREO: A Tool-Supported Approach for Offline Run-time Monitoring and Fault-Error-Failure
Chain Localization
Leonardo Scommegna,Benedetta Picano,Roberto Verdecchia,Enrico Vicario

• Tool for efficient and smooth extraction of software system execution traces
• An adaptable abstraction of the runtime evolution of the software system state
• Three profiling features proposed to enhance the reliability of the observed system
• Evaluation of three systems confirms flexibility and efficiency of the approach



OREO: A Tool-Supported Approach for Offline Run-time Monitoring
and Fault-Error-Failure Chain Localization
Leonardo Scommegnaa, Benedetta Picanoa, Roberto Verdecchiaa and Enrico Vicarioa

a Department of Information Engineering, University of Florence, Florence, Italy

A R T I C L E I N F O
Keywords:
Dynamic Analysis
Fault Localization
Monitoring
Reliability
Runtime Verification

A B S T R A C T
The ever-increasing complexity of modern software architectures has exacerbated the need for
advanced software tools able to track software execution traces to improve software reliability.

In this paper, we present OREO, a tool for offline and run-time monitoring and fault localization.
The tool implements a novel method enabling to trace software executions to discover the run-time
status, dependencies, and interactions among software components.

OREO is based on a timeline extractor, i.e., an abstraction of component lifecycles and their
interactions. The timeline extractor enables the tool to perform a runtime health state examination
of the software under analysis. The profiler is then used to analyze the error propagation originated
during the running states among software components. In so doing, the possible fault-error-failure
chains are identified.

To showcase the capabilities of OREO and its flexibility, we report the execution of the tool
on three software projects of different nature, sizes, and architectures. The analysis results in the
localization of fault-error-failure chains and safe components of the three software projects.

A discussion of the versatility, scalability, and applicability of the proposed tool to a rich variety
of application contexts is provided.

1. Introduction1

Complex distributed software architectures are nowa-2

days pervasive. The diffusion of such complex systems re-3

quires advanced reliability techniques to ensure functional4

requirements and quality attributes. Typically, software re-5

liability can be investigated and guaranteed through soft-6

ware testing, formal verification, reliability prediction and7

estimation, and standard compliance [1, 2, 3, 4]. However,8

traditional software verification and validation techniques9

are not sufficient to ensure software reliability due to the high10

level of complexity and dependencies existing in today’s11

systems that emerge exclusively during execution [1].12

Many software systems rely on stateful sessions, pro-13

cessing ordered external event sequences where responses14

depend on current and prior events (e.g., a marketplace app15

tracking inserted cart items before checkout). Unpredictable16

event sequences amplify system complexity, making it chal-17

lenging, and often even unfeasible, to comprehensively eval-18

uate the correctness of the system at testing time.19

A faulty component might enter an erroneous state after20

an event, but the error could remain latent, manifesting an21

external failure much later under specific event sequences.22

In complex cases, errors may propagate silently to other-23

wise correct components. For instance, a correct component24

might rely on a value from a faulty component. If it updates25

its state based on this erroneous value, it could become erro-26

neous itself. This can cause sporadic, inconsistent failures in27

functional components due to error propagation chains. Such28

leonardo.scommegna@unifi.it (L. Scommegna);
benedetta.picano@unifi.it (B. Picano); roberto.verdecchia@unifi.it (R.
Verdecchia); enrico.vicario@unifi.it (E. Vicario)

ORCID(s): 0000-0002-7293-0210 (L. Scommegna);
0000-0003-4970-1361 (B. Picano); 0000-0001-9206-6637 (R. Verdecchia);
0000-0002-4983-4386 (E. Vicario)

elusive faults, driven by unpredictable event sequences, are 29

termed heisenbugs [5]. 30

Software-intensive systems pose a number of open chal- 31

lenges. During development, anticipating runtime error 32

propagation patterns is difficult [6]. Once in production 33

instead, reproducing failures induced by heisenbugs, tracing 34

propagation paths, and isolating the root faulty component 35

is hard, especially in modern systems that handle multiple 36

parallel sessions, each triggering independent error propa- 37

gations. 38

To address these issues, various approaches have been 39

proposed, including testing methodologies [6] and proactive 40

maintenance solutions, often referred to as software rejuve- 41

nation [7]. Additionally, runtime verification [1, 8] strate- 42

gies, particularly logging and runtime monitoring [9, 10, 11], 43

are well-suited for these challenges, as they enable the ex- 44

traction and analysis of system execution traces. However, 45

these approaches face several key challenges. Manual code 46

instrumentation is costly and error-prone [12]. In contrast, 47

non-invasive monitoring and tracing frameworks eliminate 48

the need for manual source code modifications and their 49

related drawbacks, however they typically generate unsus- 50

tainable computational overhead [13, 12]. Some strategies 51

solve the overhead problem by performing subsampling of 52

events to be observed, such as selective event logging [14] 53

or reduced sampling rates [15]. Although these filtering 54

techniques can mitigate the overheads, they risk incomplete 55

reconstruction of error propagation. Moreover, logging tools 56

inherently lack native support for fault-error-failure prop- 57

agation analysis, and manual analysis becomes unfeasible 58

when error propagations span extended execution times or 59

involve chains of multiple interconnected events [16]. This 60

limitation is further exacerbated by the presence of multiple 61

sessions that are extracted by logging tools as a single 62

Scommegna et al.: Preprint accepted to the Journal of Systems and Software Page 1 of 23



Step 1

Plug-in OREO to a system
to be monitored

Step 2a

Execute system under
normal conditions

observing

Step 2b
OREO observes

system execution and
extracts timelines

Step 3

Timeline analysis via
profiling features

Automated /
manual input

OREO
tool

System to be
monitored Execution 

timelines

OREO
analysis
results

Figure 1: High-level overview of the OREO execution

trace of interleaved events, further complicating propagation63

analysis.64

While runtime verification tools target model consis-65

tency, performance, and/or security [12, 17], they remain66

underutilized for systematic error propagation analysis in67

complex systems. This leaves critical gaps in understand-68

ing the so-called fault-error-failure (FEF) chains [18] in69

software-intensive environments.70

In this work, we propose a novel conceptual frame-71

work for runtime verification and monitoring of software-72

intensive systems, aimed at comprehending and analyz-73

ing the propagation of faults, errors, and failures. Our ap-74

proach addresses the aforementioned limitations of tradi-75

tional logging tools and current runtime verification tech-76

niques through automated, non-intrusive instrumentation77

and efficient monitoring. This enables systematic error prop-78

agation analysis, even for complex, interleaved execution79

traces. Additionally, we introduce an abstraction called the80

timeline to represent the concurrent processes occurring at81

runtime, with particular emphasis on the lifecycle and dy-82

namic dependencies that components establish in response83

to specific sequences of external events. As a concrete84

implementation of our framework, we present the Offline85

RuntimE mOnitoring (OREO) open-source software tool.86

OREO is capable of observing the business logic of Java/-87

Jakarta Enterprise Edition web applications and extracting88

the corresponding timelines. To support fault localization89

and the identification of fault-error-failure (FEF) chains,90

OREO is equipped with a profiler module that performs91

offline analysis of the extracted timelines.92

Our experimental results demonstrate that our frame-93

work requires minimal instrumentation effort regardless of94

the size of the target system, imposes only minimal over-95

head in terms of memory usage and response delay, and96

effectively supports developers during both the design and97

debugging phases. In the design phase, the framework high-98

lights crucial components or methods that may facilitate99

error propagation; during debugging, it aids in identifying100

components affected by heisenbugs.101

The main contributions of the paper are the following:102

• The proposal of an abstraction, referred to as timeline, 103

able to represent the behavior of the concurrent pro- 104

cesses occurring at runtime, bridging the gap between 105

the offline design of the logic and its online evolution; 106

• The design and development of an open-source run- 107

time monitoring tool, able to observe the evolution 108

of the business logic and extract the corresponding 109

timeline. 110

• The application of the OREO tool to a concrete ap- 111

plication scenario. For this purpose, we implemented 112

a profiler that analyzes the extracted timeline relying 113

on the concept of error propagation and FEF chains. 114

Due to the general connotation of the OREO tool, 115

a further discussion is provided to expose the rich 116

variety of software monitoring problems to which the 117

timeline extractor can provide support in decision- 118

making policies; 119

• In-depth performance evaluation of the OREO tool by 120

considering three heterogeneous software projects. 121

• The source code of the OREO tool. The open-source 122

repository is made available online at the following 123

link: https://github.com/STLab-UniFI/oreo-tool. 124

For the best of our knowledge, this is the first study devel- 125

oping a tool to analyse cause-effects fault-failure relations, 126

i.e., fault-error-failure chains, abstracting from the type of 127

fault the occurred or the failure manifested by the system. 128

2. Overview 129

In this section, we provide an overview of the OREO 130

tool presented in this research, both in terms of intuitive 131

description of the problem tackled by the tool (Section 2.1) 132

and general functioning of the tool (Section 2.2, see also 133

Figure 1.) 134

2.1. The Problem Addressed 135

During the execution of a software-intensive system, 136

instances of programming classes are dynamically created at 137

runtime to satisfy the functional requirements of the system. 138

Such instances, commonly storing their state in volatile 139

memory, communicate among each other, exchanging and 140

Scommegna et al.: Preprint accepted to the Journal of Systems and Software Page 2 of 23

 https://github.com/STLab-UniFI/oreo-tool


manipulating information during the execution of a use case141

scenario. If, during such execution, a bug is encountered142

in one of the runtime instances, the error can propagate143

from one instance to the other as they communicate. These144

types of heisenbugs [5] may not lead to an instant failure145

of the system, leading to complex error propagation chains146

involving numerous instances and interactions before the147

failure becomes noticeable to the end user (if ever). Iden-148

tifying runtime heisenbugs, given the impediments related149

to trace them back to a specific component, is therefore a150

cumbersome and time-consuming process [6, 16].151

1 A.java

2 @SessionScoped

3 public class A {

4 public void startProcedure(double p, double q) {

5 B bObject = ... // initialization of B object

6 // some instructions

7 bObject.initialize(p, q); // A-B interaction

8 // other instructions

9 }

10 }

11 B.java

12 @RequestScoped

13 public class B {

14 private static final double CONST = 10.0;

15 private double nonZeroState;

16
17 public void initialize(double startingValue , double factor) {

18 this.nonZeroState=startingValue -CONST;// BUG! state should be checked

19 C cObject = ... // initialization of C object

20 double newCState = this.nonZeroState * factor;

21 cObject.setCState(newCState); // B-C interaction

22 }

23 }

24 C.java

25 @SessionScoped

26 public class C {

27 private double cState;

28
29 public void setCState(double state) {

30 this.cState = state;

31 }

32
33 public double getUpdatedCState(double num) {

34 return num/this.cState;

35 }

36 }

Listing 1: Source code of the exemplary software system.

As a simple example, consider three Java classes: A,152

B, and C. A portion of their code is shown in Listing 1.153

As illustrated, class A, within its method startProcedure,154

invokes class B at line 7, passing the two double values it155

receives as input. Class B, within its initialize method,156

interacts with class C through the invocation of the setCState157

method at line 21. This method invocation has the side158

effect of updating the internal state of C, namely cState.159

Additionally, each class is annotated with a Context and160

Dependency Injection (CDI) annotation: A and C are marked161

as @SessionScoped, while B is annotated as @RequestScoped. In162

Java Enterprise Edition, these annotations define the lifespan163

of objects: @SessionScoped binds the lifespan of an object to164

the duration of a session, whereas @RequestScoped restricts it165

to a single request.166

Let us consider a scenario of usage of a software system167

that includes classes A, B, and C. The exemplary scenario is168

graphically represented in Figure 2 and involves four subse-169

quent requests in time to the software-intensive system (𝑅1-170

𝑅4, depicted on the x-axis in Figure 2). A request is defined171

as an interaction of the end user with the presentation layer172

of the software-intensive system, e.g., an input provided by173

A

B

C

system 
failure

error
propagation

error
activation

erroneous state

instance 
destruction

Figure 2: Runtime error propagation example of Listing 1.

the end user through a graphical user interface or command 174

line. To satisfy the requests, the system instantiates three 175

different objects: one of type A, one of type B, and one of 176

type C (reported on the y-axis and depicted as rectangles 177

colored violet, green, and yellow, respectively, in Figure 2). 178

The first request (𝑅1) leads to the creation of an instance 179

of A. Such item (and its transient state) is kept in volatile 180

memory also during the time span needed to satisfy the 181

subsequent requests (𝑅2, 𝑅3, and 𝑅4). During 𝑅2, instance 182

A communicates information to the new instance B, which 183

lives only along request 𝑅2. While 𝑅1 was characterized by 184

a correct behaviour, after instance A passed information to 185

instance B, a fault residing in B originates an error while 186

this latter instance is processing the data (depicted with a 187

lightning bolt icon in Figure 2). Before terminating its life, 188

B communicates with instance C, also created in request 𝑅2, 189

propagating the error once more. Concretely, during request 190

𝑅2, the user invokes the startProcedure method of object A, 191

passing the value 10 as the actual parameter for p and 5 for 192

q. As confirmed by the A.java code in Listing 1, A interacts 193

with B by invoking its method initialize with startingValue 194

= 10 and factor = 5. As shown in the code of B.java in 195

Listing 1, when initialize receives startingValue = 10, an 196

error is triggered in B, leading to the assignment of 0 to the 197

variable nonZeroState. Subsequently, based on its erroneous 198

state, B invokes setCState method of C with an incorrect 199

parameter (0), propagating its error. SetCState then updates 200

the internal state of C with the erroneous value passed by 201

B and concludes the processing of request 𝑅2 without any 202

failure being externally visible to the user. At the end of 𝑅2, 203

since B is @RequestScoped, it is destroyed. 204

As time progresses, while satisfying the third request 205

𝑅3, the error originating in instance A remains silent. As 206

the fourth and last request 𝑅4 constituting the use case sce- 207

nario terminates, the error finally leads to the failure of the 208

software-intensive system. Specifically, assume that during 209

𝑅3, the method setCState is not invoked. As a result, at the 210

Scommegna et al.: Preprint accepted to the Journal of Systems and Software Page 3 of 23



beginning of 𝑅4, the error in object C persists. Finally, sup-211

pose that during 𝑅4, the user invokes the getUpdatedCState212

method. As shown in C.java code of Listing 1, this method213

triggers a division by the internal state of C which in this214

case is zero. Java raises an ArithmeticException, causing215

the system to fail. Despite the simplicity of the code in216

the example, the system failure (in 𝑅4) occurs significantly217

later than the activation of the initial error that triggered the218

propagation (in 𝑅2).219

Furthermore, the component manifesting the failure con-220

tains no coding faults, and at the time of failure, the re-221

sponsible component is no longer among the active objects.222

These conditions dramatically complicate reproducing the223

failure and detecting or removing the underlying fault. In the224

presence of software-intensive systems with multiple com-225

ponents and interactions, an error has more opportunities to226

propagate, leading to even more complex propagation sce-227

narios and making the identification of the responsible com-228

ponent significantly more challenging. OREO is designed229

to analyze, through a formalisation and monitoring strategy,230

the runtime state of instances and the communication among231

them, allowing to study FEF chains such as the one reported232

in the example above. Throughout the paper, we will follow233

the taxonomy of fault, error, and failure outlined by Avizienis234

et al. [18].235

2.2. OREO at a Glance236

As introduced in Section 2.1, understanding the run-237

time behavior of the system, visualizing error propagation238

scenarios, and identifying the potential faulty components239

that caused a failure is complex. To this end, we propose240

OREO, a tool designed to support the comprehension and241

analysis of Fault Error Failure chains. A high-level overview242

on utilizing OREO is depicted in Figure 1. As shown in243

the figure, executing OREO relies on three main steps. In244

the first step (Step 1), OREO is plugged-in into the system245

to be monitored. As further detailed in Section 3.3, this246

process intuitively consists of specifying OREO as a Context247

and Dependency Injection extension in the system to be248

monitored. In the considered JEE context, practically this249

step consists of adding a line to the configuration file of the250

build automation tool used (e.g., Maven1).251

The second step of OREO’s execution consists of two252

steps executed in parallel (Step 2a and Step 2b). On one253

hand, the system to be monitored is executed under normal254

conditions, e.g., by manually or automatically executing use255

case scenario or a predefined test suite (Step 2a). At the same256

time, OREO observes the system execution and extracts and257

stores locally the timelines observed within the business258

logic of the system under analysis (Step 2b). As final output259

of this latter step, once the execution of the system to be260

monitored is terminated, OREO provides the set of observed261

execution timelines.262

As last step of OREO’s execution, the timelines collected263

through Step 2b can be analyzed according to one of the264

profiling features provided out of the box with OREO (Step265

1https://maven.apache.org. Accessed 3rd October 2024.

3). As further detailed in Section 4.3, OREO currently 266

implements three different profiling features, namely iden- 267

tification of safe and unsafe instances, identification of FEF 268

root instances, and identification of FEF scenarios. The final 269

output of the execution of OREO is the analysis results of the 270

monitored system according to one or more of the selected 271

profiling features. 272

3. The OREO Tool 273

In this section, we document the design and implemen- 274

tation of the OREO tool. Additionally, this section covers 275

the background concepts leveraged by the tool, including a 276

description of the timeline abstraction used by OREO and 277

how this abstraction is extracted during the execution of a 278

system under analysis. This essentially covers steps 1, 2a, 279

and 2b as represented in Figure 1. 280

3.1. Representing the Components Life: the 281

Timeline Abstraction 282

In order to provide a convenient and intuitive way to 283

represent the dynamic evolution of the business logic, we 284

formalize an abstraction named timeline able to represent (i) 285

how the business logic hosts concurrently living components 286

and (ii) how the components react if they are subject to a 287

specific input sequence arriving over time. In the context of 288

our study, a timeline represents the evolution of the business 289

logic over a specific sequence of events along a single user 290

session. A user session is defined as a sequence of con- 291

secutive, time-ordered interactions performed by the same 292

user on the given software-intensive system In the business 293

logic layer, each active user session is managed separately 294

from the others. Particularly, a component belonging to a 295

specific user session cannot interact directly with a compo- 296

nent belonging to another session. The isolation of session- 297

specific elements ensures that the actions of one user do 298

not interfere with the session of another user. In OREO, the 299

management of timelines reflects the session management 300

mechanism naturally applied by the business logic, i.e., each 301

session is collected and analyzed separately in an ad-hoc 302

timeline. Thus, a timeline provides a snapshot of an execu- 303

tion scenario performed by a user, capturing the interaction 304

between the presentation layer, which is responsible for the 305

user interface, and the components operating in the business 306

logic layer. The timeline abstracts the concrete behavior to 307

identify the components that persist in memory over time, as 308

well as the interactions and dependencies that occur among 309

these components during runtime. An example of a timeline 310

abstraction is depicted in Figure 3. 311

Formally, a timeline TL is a tuple ⟨𝑇 , 𝐶, 𝐽 , 𝐼, 𝑂⟩ where: 312

• 𝑇 ∶= {𝑡0, 𝑡1, ...𝑡𝑛} ⊂ ℝ is a sequence of time 313

points, with 𝑡0 = 0 and 𝑡𝑛 > 𝑡𝑛−1, representing the 314

time point at which the presentation layer accepts and 315

forwards the 𝑛-th interface interaction to the business 316

logic. Time points are represented along the x-axis 317

of Figure 3. By convention, 𝑡𝑛 closes the sequence, 318

denoting the end of the observation interval captured 319

Scommegna et al.: Preprint accepted to the Journal of Systems and Software Page 4 of 23

https://maven.apache.org


Figure 3: Timeline abstraction of a business logic made of 5
component types along a user interaction with 10 steps.

by the snapshot. The (left-closed right-open) interval320

[𝑡𝑖, 𝑡𝑖 + 1) is referred to as an 𝑒𝑝𝑜𝑐ℎ and denoted321

by 𝑅𝑖, and its duration 𝑡𝑖+1 − 𝑡𝑖 is denoted 𝛿𝑖. In a322

practical perspective, 𝑅𝑖 encompasses all the back-323

end actions performed after the interface interaction324

received at time 𝑡𝑖, and it also includes the idling325

time during which the back-end waits for the next326

interaction. Formally 𝛿𝑖 = 𝑝𝑟𝑜𝑐𝑅𝑖 + 𝑖𝑑𝑙𝑒𝑅𝑖 where327

𝑝𝑟𝑜𝑐𝑅𝑖 represents the processing time and 𝑖𝑑𝑙𝑒𝑅𝑖 the328

idle time of 𝑅𝑖.329

The intervals between subsequent interactions have a330

duration that guarantees that a new interaction does331

not arrive before the current one has been processed.332

Formally, 𝑡𝑖 + 𝑝𝑟𝑜𝑐𝑅𝑖 > 𝑡𝑖+1,∀𝑖 ∈ [0, 𝑛). If sequences333

of close requests or even bursts of interactions should334

occur, the presentation layer will take care of keeping335

the system synchronous and will forward the interac-336

tions to the business logic in the order in which they337

were executed.338

• 𝐶 is a set of components (𝐶1 through 𝐶5 in the339

example of Figure 3). A multiplicity of components340

exist throughout the timeline. This is represented in341

the y-axis of Figure 3.342

• 𝐽 is the set of all the component instances. In fact,
during the system execution, a component can be
instantiated, (i.e., created and placed in memory) mul-
tiple times. Let 𝑗𝑖𝑐 be the 𝑖-th instance of 𝑐 during the
Timeline TL, then 𝐽𝑐 is the set of all instances of 𝑐.
Formally:

𝐽𝑐 = {𝑗𝑖𝑐 ∈ 𝐽 |0 ≤ 𝑖 < 𝑚}

Let 𝑚 be the number of instances of 𝑐 during TL.343

Following the definition of 𝐽𝑐 , the set 𝐽 can also be344

defined as follows: 𝐽 =
⋃

𝑐∈𝐶
𝐽𝑐 .345

An instance 𝑗𝑖𝑐 is characterized by a specific life cycle.346

The life cycle of 𝑗𝑖𝑐 , denoted as 𝑙𝑗𝑖𝑐 = [𝑅𝑗𝑖𝑐
𝑏 , 𝑅

𝑗𝑖𝑐
𝑒 ], is the347

set of ordered epochs during which 𝑗𝑖𝑐 exists. Thus,𝑅𝑗𝑖𝑐
𝑏 348

is the epoch at which 𝑗𝑖𝑐 is instantiated, and 𝑅𝑗𝑖𝑐
𝑒 is the 349

epoch at which 𝑗𝑖𝑐 is destroyed. 350

The life of each instance 𝑗𝑖𝑐 is represented graphically 351

by a rectangle spanning along the line of 𝑐 for all the 352

epochs in 𝑙𝑗𝑖𝑐 . 353

PL ∈ 𝐽 is a special fictitious instance that accounts 354

for the presentation layer. 355

• 𝐼 is the set of all interactions that occur between 356

components along the Timeline TL. Interactions are 357

divided into two main subsets: 𝐷 and 𝑈 , hence it 358

follows that 𝐼 = 𝐷 ∪ 𝑈 . 359

𝐷 ⊆ 𝐽×𝐽×𝑅 is a collection of undirected interactions 360

occurring between instances within epochs of the 361

timeline: ⟨𝑗𝑖𝑐1, 𝑗𝑗𝑐2, 𝑅⟩ ∈ 𝐷 represents an invocation of 362

𝑗𝑗𝑐2 performed by 𝑗𝑖𝑐1, or vice versa, that occurs during 363

the epoch 𝑅. Note that interactions are undirected, 364

i.e. ⟨𝑗𝑖𝑐1, 𝑗𝑗𝑐2, 𝑅⟩ does not specify whether 𝑗𝑖𝑐1 invokes 365

𝑗𝑗𝑐2 or vice versa. The main reason for leaving the 366

direction unspecified is that the timeline abstraction 367

aims at capturing dependencies, and the direction of 368

calls cannot distinguish these unless we are also able 369

to distinguish whether 𝑗𝑖𝑐1, 𝑗𝑗𝑐2, or both, undergo a side 370

effect during the interaction, which is not supported 371

by the automated logging process implemented by 372

OREO. Note that 𝐷 is defined as a collection, not as a 373

set, as there can be multiple equal occurrences of the 374

same triple ⟨𝑗𝑖𝑐1, 𝑗
𝑗
𝑐2, 𝑅⟩, each with its own identity, 375

which will occur whenever the same epoch includes 376

multiple calls occurring between 𝑗𝑖𝑐1 and 𝑗𝑗𝑐2. Note 377

also that two instances 𝑗𝑖𝑐1 and 𝑗𝑗𝑐2 can establish a 378

dependency ⟨𝑗𝑖𝑐1, 𝑗
𝑗
𝑐2, 𝑅⟩ if and only if 𝑅 ∈ 𝑙𝑗𝑖𝑐1 and 379

𝑅 ∈ 𝑙𝑗𝑗𝑐2
. In other words, two instances can establish 380

a dependency if and only if there exists an overlap 381

between their life cycles: 𝑙𝑗𝑖𝑐1 ∩ 𝑙𝑗𝑗𝑐2
≠ ∅ 382

𝑈 ⊆ 𝐽 × 𝑅 represent a collection of interactions 383

between the presentation layer PL and an instance of 384

𝐽 : ⟨PL, 𝑗, 𝑟⟩ ∈ 𝑈 . Within each epoch in 𝑟 ∈ 𝑅, 385

there exist exactly two interactions with PL, namely 386

𝑢𝑟𝑏, 𝑢
𝑟
𝑒 ∈ 𝑈 . 𝑢𝑟𝑏 occurs as the first interaction of the 387

epoch, preceding any other event 𝐷 in 𝑟. Conversely, 388

𝑢𝑟𝑒 occurs at the end as the last interaction of the epoch. 389

• 𝑂 ⊆ 𝐼 × 𝐼 is a partial order on 𝐼 that specifies the 390

ordering in time for any 2 interactions. 391

The provided formalization identifies a continuous-time 392

system (𝑇 ⊂ ℝ) in which intra-session requests are syn- 393

chronous but inter-session requests are asynchronous. Sub- 394

sequent requests are synchronous within the same session 395

while they are asynchronous if they belong to different 396

sessions. Separate session management by the business logic 397

layer allows for individual consideration of each timeline, 398

viewing the system as a collection of synchronously working 399

Scommegna et al.: Preprint accepted to the Journal of Systems and Software Page 5 of 23



System

Business Logic

Instrumentation

Intercepts

Analyzer

Updates

Analyses

Figure 4: The Timeline extraction setup.

subsystems. Such separation allows us to consider single-400

session scenarios throughout the rest of the paper without401

loss of generality.402

To provide a concrete example, let us consider the time-403

line represented in Figure 3. Request 𝑟6 arrives at time 𝑡6404

identified as the timeshift of 𝛿6 with respect to the previous405

𝑡5. During the response process, a component instance of406

type 𝑐2 is created and subsequently, it is destroyed at request407

𝑟7. During its life as represented by the link at request 𝑟7, the408

instance interacts with a component of type 𝑐1 which lives409

until 𝑟10.410

3.2. Timeline Extraction411

The business logic design defines the specific behavior412

that the application should maintain in response to individual413

requests. However, the dynamic evolution of the application,414

in terms of active instances and interactions, also depends on415

the sequence of interactions performed by the user.416

Thus, the system identifies a number of dynamic data417

flow coupling scenarios almost impossible to consider at418

implementation time. In particular, the application could419

show at runtime unexpected and sometimes counter-intuitive420

patterns (e.g., a lower-scoped component that often lives421

for an extended period of time), or conversely, some rare422

input sequences could bring the system to a failure with high423

probability.424

For these reasons, with OREO we proposed a solution425

aimed to exploit the timeline abstraction beyond the simple426

graphical support use. To do this, OREO leverages a timeline427

extraction setup that, as can be seen in Figure 4, is heavily428

inspired by configurations often proposed in the field of429

runtime verification [12]. The configuration of OREO con-430

sists of (i) the target system (i.e., the application we want to431

observe), (ii) an instrumentation module that, running con-432

currently with the system, extracts information at runtime,433

and (iii) an analysis module that processes the observation.434

Each request made by the user represents a system event435

and triggers the instrumentation which observes the business436

logic behavior during the response process. The information437

about component interactions, instantiation, and destruction438

is collected and used to update the execution trace of the439

application. In this form, the execution trace represents the440

Figure 5: OREO Tool Class Diagram.

timeline of the application that is progressively built at 441

runtime by the instrumentation module request after request. 442

The identified setup enables both online and offline 443

analysis of the extracted timeline classifying the analysis 444

module as a monitor or a profiler respectively. In this work, 445

we demonstrate how OREO can support the reliability as- 446

sessment and improvement of software architectures. In 447

particular, we show how the timelines extracted dynamically 448

can be used to perform fault localization tasks and what-if 449

analysis. 450

3.3. OREO: a JEE Implementation for Timeline 451

Extraction 452

The concrete setup enabling the extraction of instances 453

of the novel timeline abstraction was implemented con- 454

cretely in the form of a JEE tool named OREO. More in 455

detail, the tool can extract the necessary information from 456

active CDI and Enterprise Java Beans (EJB) components. 457

For this reason, its usage is particularly suited for the so- 458

called stateful software architectures where the business 459

logic is mainly hosted on the backend server. 460

Scommegna et al.: Preprint accepted to the Journal of Systems and Software Page 6 of 23



The architectural view of the tool is represented in Fig-461

ure 5 in form of a class diagram. Although with different462

nomenclature, the package structure is based on the setup463

organization of Figure 4. The BeanTimeLineManager package464

encapsulates the instrumentation module and represents the465

core of the tool, the Timeline package defines the represen-466

tation of the timeline abstraction, and finally, the Profiler467

provides a concrete instance of the analysis module. In order468

to depict the main mechanism of OREO, an overview of the469

BeanTimeLineManager package is provided down below.470

The class BeansRequestListener is the implementation of471

a CDI listener which is triggered right before and right after472

each response process to collect all the information of inter-473

est to update the timeline with a new time step. Before start-474

ing each response process, it exploits the InstanceFinder, a475

class that relies on the Service Provider Interface (SPI) of476

CDI, to obtain a snapshot of all the living business logic477

instances at that moment. Once generated the response,478

BeansRequestListener performs another snapshot of the in-479

stances. In this way, it can deduce the newly created, de-480

stroyed, and living instances through a comparison between481

the initial and final snapshots.482

To also detect the component interactions, the listener483

consults the MethodCollector class, a simple class updated by484

the CDI interceptor MethodCallInterceptor. A CDI intercep-485

tor can intercept all the methods invoked by instances whose486

class is decorated with an ad-hoc annotation. However,487

annotating manually all the component classes of interest is488

time-consuming. To overcome this inconvenience, a CDI ex-489

tension, represented by the class MethodCallsInterceptorExt490

was developed. A CDI extension allows the definition of491

specific behaviors during standard phases of the CDI frame-492

work. The present extension, in particular, will be triggered493

during one of the startup phases of CDI decorating auto-494

matically all the components of interest with the annotation495

required by MethodCallInterceptor.496

OREO intercepts each request received by the target497

system and for each of them, it collects the following infor-498

mation distinguishing among multiple parallel sessions:499

• the timestamp of the request arrival;500

• the set of instances created during the response pro-501

cess;502

• the sequence of interactions performed by compo-503

nents;504

• the set of instances destroyed at the end of the response505

process.506

OREO was designed in order to be flexible and allow a507

straightforward adoption in a “plug and play” fashion. The508

tool is implemented by enforcing that it does not require to509

modify the code of the target system. To start an observation510

process, it is sufficient to specify OREO as the CDI extension511

of the system. As default behavior OREO gathers infor-512

mation regarding all the components of the business logic.513

However, it is also possible to fine-tune the mechanism of the514

tool by defining ad-hoc filters to ignore some components515

and identify the business logic components of interest.516

4. Fault Localization with OREO 517

In this section, we present the procedure for identifying 518

fault-error-failure chains and detail the method for profiling 519

the business logic, effectively covering step 3 shown in 520

Figure 1. 521

4.1. Fault-Error-Failure Chain in the Business 522

Logic 523

During the usage of an application, a component may 524

enter into an erroneous state. The fault causing the error 525

could be internal or external [18]. Internal faults originate 526

inside the system boundaries, i.e., in the source code of 527

the system itself. External faults instead, originate outside 528

the system boundaries, e.g., faults caused by malfunctions 529

manifested by external services like third-party API, sensors, 530

and databases. An error can be then identified as a shift 531

from the correct state of a component to an incorrect one. 532

A failure is intended as an event that occurs when the 533

service provided by the system deviates from the correct 534

behaviour of the service. Once entered in an erroneous state, 535

the system can continue to maintain its correct functioning 536

for an unpredictable period of time. Failures will manifest 537

when the system has to provide a service relying on its 538

erroneous state. 539

During the response process, components interact with 540

each other providing their functionalities. Let us consider 541

components as individual systems. A component that man- 542

ifests a failure during interaction will result in an external 543

fault activation from the perspective of the other component. 544

The external fault, in turn, may drive the correct component 545

into an erroneous state. 546

Considering now the whole application as the system, 547

a single internal error can propagate among components. 548

Eventually, the system will manifest a failure tangible also 549

for the end user, also known as system failure. The propa- 550

gation phenomenon among components is usually referred 551

to as FEF Chain [18]. An error activated in a component 552

represents a starting point for the error that could spread in 553

the application i.e., error accumulation. 554

The interactions among components and their order de- 555

pend on the sequence of inputs that the user performs at 556

runtime. Thus, also the FEF chain evolution establishes a 557

strict relation with the unpredictable behavior of the user. 558

In the context of a real application, the number of compo- 559

nents in the business logic is considerable. Frequently, real 560

applications also allow multiple alternative causes of actions 561

to obtain the same goal. The high number of components 562

involved jointly with the number of possible combinations 563

of user interactions makes the static prediction of error prop- 564

agation a very challenging task. Additionally, it is also very 565

challenging, and sometimes almost impossible, to identify 566

the original fault (i.e., the fault that gives rise to the FEF 567

chain) once a failure arises. 568

The unfeasibility of fault detection is further exacerbated 569

when components live concurrently at runtime and maintain 570

a diversified lifespan. Assigning a limited life cycle to com- 571

ponents, also known as scope, is a very common practice in 572

Scommegna et al.: Preprint accepted to the Journal of Systems and Software Page 7 of 23



software architectures. Scoped components allow easy man-573

agement of transient information (i.e., session state [19]).574

The life cycle of the information is bound to the life cycle575

of the component that encapsulates it. As a result, scope576

and life cycle management are mechanisms usually pro-577

vided by third-party frameworks. The life cycle management578

frameworks usually provide a module, called container, that579

manages the component instances. Frequently, the container580

in addition to creation and destruction of instances also581

deals with dependencies management. Specifically, when a582

component instance requires a reference to a specific type583

of instance, i.e., a dependency, the container at runtime584

searches for it among the currently living instances. If an585

eligible instance exists, the container provides the reference586

to the requiring component. If there are no candidates, the587

container will provide the reference to a newly created in-588

stance initialized for the occasion. This practice is frequently589

identified as dependency injection. It is very popular in590

software architecture since they promote loose coupling and591

flexible code [20].592

There are plenty of frameworks that provide automatic593

life cycle management and dependency injection, following594

the guidelines outlined above. For the sake of concreteness,595

in this work, we focus on Contexts and Dependency Injection596

(CDI) 2, one of the most popular frameworks used for the597

development of stateful enterprise architectures.598

In CDI, through metadata specifications, each compo-599

nent is associated with a predefined scope that binds its600

life cycle with a specific amount of HTTP requests 3. More601

in detail, in JEE, standard scopes are provided by the CDI602

framework and are the following:603

• RequestScoped: the component associated with this604

scope lasts for the time required to respond to a single605

HTTP request;606

• SessionScoped: the component lives for an entire607

HTTP session;608

• ApplicationScoped: the component lives for the entire609

lifetime of the application,610

• ConversationScoped: the component lives during a611

single HTTP session for a sequence of HTTP requests612

explicitly demarcated by the developer.613

By considering the introductory example presented in614

Figure 1, B represents a RequestScoped instance since it615

lives just for the duration of request 𝑅2. C is a Conversa-616

tionScoped instance since it lives for the subsequent requests617

𝑅2, 𝑅3 and 𝑅4, while A is a SessionScoped instance whose618

lifespan covers the whole session of execution. Finally, while619

not represented in Figure 1, ApplicationScoped corresponds620

to an instance that spans for the entire time the software-621

intensive system is operative, i.e., an instance that is created622

2https://jakarta.ee/specifications/cdi/ Accessed 5th October 2024
3https://docs.jboss.org/weld/reference/latest/en-US/html/

scopescontexts.html Accessed 5th October 2024

when a software-intensive system is started, and is termi- 623

nated only when the software-intensive system is terminated. 624

This business logic setup identifies a scenario where 625

instances are born and eventually die. When a component 626

dies, also any erroneous information carried inside is de- 627

stroyed. The finite lifespan of components then, enables the 628

possibility to correct the overall state of the application [21]. 629

At the same time, the fault that originates an FEF chain 630

may belong to an instance that no longer exists when the 631

failure manifests, making the fault localization task more 632

challenging. 633

As a side note, dependency injection containers allow the 634

management of “global” components that are shared among 635

multiple sessions, e.g., ApplicationScoped components in 636

CDI. This makes it possible to develop a transitive depen- 637

dency between sessions. OREO also handles these corner 638

cases by representing global components in each timeline. 639

To manage the interference of another session on a global 640

component within a timeline, OREO inserts a fictitious 641

instance that interacts with that component. 642

4.2. Fault-Error-Failure Chain Formalization 643

Based on the timeline abstraction, we now formally 644

define the concept of fault, error, and failure, and how the 645

propagation of the error can give rise to FEF chains. 646

Let TL = ⟨𝑇 , 𝐶, 𝐽 , 𝐼, 𝑂⟩ be a timeline. A fault is 647

activated on an instance 𝑗 ∈ 𝐽 , at a specific epoch, due to a 648

specific interaction 𝑖 ∈ 𝐼 . From that moment on, the instance 649

is considered an erroneous instance. We identify this event 650

as root error activation e = (𝑖, 𝑗). An erroneous instance 651

𝑗1 ∈ 𝐽 has the ability to propagate its error and thus render 652

another instance 𝑗2 ∈ 𝐽 erroneous, through an interaction 653

⟨𝑗1, 𝑗2, 𝑟⟩ with 𝑟 epoch in 𝑅. A failure 𝐹 𝑟
𝑗 is an error that 654

propagates to the presentation layer via interaction with an 655

erroneous instance 𝑗 ∈ 𝐽 . Such interaction is denoted as 656

𝑢𝑟𝑒 = ⟨𝑗,PL, 𝑟⟩. 657

A FEF Chain in TL is a tuple 658

FEF = ⟨𝑇 FEF, 𝐶FEF, 𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑑FEF, 𝐼FEF, 𝑂⟩

where: 659

• 𝐼FEF is an ordered list of interactions {𝐼𝑖 ∈ 𝐼|𝐼1, 𝐼2, ...𝐼𝑛}660where 𝐼FEF ⊆ 𝐼 so that for each 𝐼𝑖 = ⟨𝑗1, 𝑗2, 𝑅𝑥⟩ ∈ 661

𝐼FEF exists at least one interaction 𝐼𝑙 =< 𝑗0, 𝑗1, 𝑅𝑦 > 662

with 𝑙 < 𝑖 and 𝑖 ≠ 1, i.e., exist a transitive relation 663

between the instance in 𝐼FEF. 664

• 𝑇 FEF is the timespan during which FEF occur. Let
𝑡1 ∈ 𝑇 be the time relative to the epoch 𝑟 where 𝐼1occurs. Let 𝑡𝑛 ∈ 𝑇 be the time relative to the epoch 𝑟
where 𝐼𝑛 occurs. Then:

𝑇 FEF = {𝑡 ∈ 𝑇 |𝑡1 ≤ 𝑡 ≤ 𝑡𝑛}

• involvedFEF ⊆ 𝑗 is the set of instances involved in the 665

propagation chain: 666

Scommegna et al.: Preprint accepted to the Journal of Systems and Software Page 8 of 23

https://jakarta.ee/specifications/cdi/
https://docs.jboss.org/weld/reference/latest/en-US/html/scopescontexts.html
https://docs.jboss.org/weld/reference/latest/en-US/html/scopescontexts.html


involvedFEF =
⋃

⟨𝑗1,𝑗2,⋅⟩∈𝐼FEF

{𝑗1, 𝑗2}

A root instance of a FEF, rootFEF ∈ involvedFEF is the667

instance that initiated the fault propagation chain. Let668

𝑒FEF = (𝑖, 𝑗) the root error activation event of FEF,669

then rootFEF = 𝑖.670

• 𝐶FEF ⊆ 𝐶 is the set of all the components contained in671

the FEF chain. 𝐶FEF represents the component types672

of instances involved in the fault propagation chain.673

Formally:674

𝐶FEF =
{

𝑐 ∈ 𝐶 ∣ ∃ 𝑗 ∈ involvedFEF, type(j) = 𝑐
}

Where type(j) = 𝑐 meaning that the type of the675

instance j is c.676

• 𝑂 ⊆ 𝐼 × 𝐼 is a partial order on 𝐼 that specifies677

the temporal ordering of any two interactions. Given678

that 𝐼FEF ⊆ 𝐼 and the order of interactions in 𝐹𝐸𝐹679

follows the same ordering criterion as TL, 𝑂 is shared680

between TL and FEF.681

Finally, 𝑈TL
FEF is the set of all possible682

FEF = ⟨𝑇 FEF, 𝐶FEF, involvedFEF, 𝐼FEF, 𝑂⟩ where 𝑇 FEF ⊆683

𝑇 ,𝐶FEF ⊆ 𝐶 , involvedFEF ⊆ 𝐽 , 𝐼FEF ⊆ 𝐼 . Formally:684

𝑈TL
FEF =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

FEF
|

|

|

|

𝑇 FEF ⊆ 𝑇 ,

𝐶FEF ⊆ 𝐶,

involvedFEF ⊆ 𝐽,

𝐼FEF ⊆ 𝐼

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

Consider, for example, the timeline shown in Figure 2.685

Let us denote the instance of type A as a, the instance of type686

B as b, and the instance of type C as c. Within this timeline,687

there is a process of fault activation, error propagation, and688

failure manifestation. This can be represented by an FEF689

chain, which we will refer to as exFEF. The interaction that690

activates the error in b is the interaction between a and b in691

𝑅2, < 𝑎, 𝑏, 𝑅2 >. Subsequently, the error propagates from b692

to c via < 𝑏, 𝑐, 𝑅2 >. Finally, in 𝑅3, the failure occurs due693

to < 𝑐, 𝑃𝐿,𝑅4 >. The FEF chain exFEF is composed as694

follows:695

• 𝑇 exFEF = 𝑅2, 𝑅3, 𝑅4696

• 𝐶exFEF = 𝐵,𝐶697

• involvedexFEF = 𝑏, 𝑐,PL698

• 𝐼exFEF = {< 𝑏, 𝑐, 𝑅2 >,< 𝑐,PL, 𝑅4 >}699

• 𝑏 as root instance.700

4.3. Profiling the Business Logic with OREO 701

The tight relationship between software components and 702

runtime events makes it difficult to statically analyze and 703

predict the actual behavior of the application. In case of 704

system failure, the component that provides the malfunction 705

is not necessarily the component that hides the fault. The 706

system failure could be the result of an FEF chain and the 707

fault could be hidden in a component already dead at the 708

failure instant. Additionally, the FEF chain evolution strictly 709

relies on user behaviour which is performed at runtime and 710

is out of the control of the developer. For this reason, in 711

this work, we integrated into OREO a profiler as a concrete 712

implementation of the analysis module represented in Fig- 713

ure 4. The profiler aims to offer insights into the runtime 714

behavior of the system. Analyzing the timelines generated 715

by the instrumentation module, the profiler can deduce the 716

possible error propagation scenarios thus supporting both 717

fault analysis and dependability assessment. 718

Concretely, the profiler offers support for the timeline 719

analysis with three different features. 720

OREO Profiling Feature 1: Identification of Safe and 721

Unsafe Instances To correctly understand this feature, we 722

introduce the concept of safe and unsafe instances. Let us 723

consider a usage scenario executed on a standard software 724

architecture. The scenario is characterized by a sequence of 725

user inputs and by the corresponding response process in 726

the business logic. Let us suppose that, at a certain point, 727

an instance enters an erroneous state. Thus, if there is no 728

chance for an instance to be involved in the FEF chain of the 729

supposed error, we consider the instance safe. Conversely, 730

if there is at least one feasible FEF chain that involves the 731

instance, the instance will be considered unsafe. 732

Starting from a timeline and supposed an instance as 733

erroneous, the OREO profiler is able to identify which 734

instances are safe and which are unsafe. In the case of 735

real-world applications, the particularly large and intricate 736

business logic makes the identification of safe instances 737

hard, especially in presence of long input sequences. There- 738

fore, the ability to exclude automatically instances from the 739

propagation scenarios constitutes a remarkable boost for the 740

analysis. 741

Formally, given a timeline TL = ⟨𝑇 , 𝐶, 𝐽 , 𝐼, 𝑂⟩ and 742

a root error activation event 𝑒 = (𝑖err, 𝑗err) with instance 743

𝑗err ∈ 𝐽 and interaction 𝑖err ∈ 𝐼 , an instance 𝑗 ∈ 𝐽 is 744

said to be unsafe if there exists at least one FEF with error 745

activation event 𝑒 that involves 𝑗. The unsafe set is defined 746

as follows: 747

unsafe(𝑒) =
⋃

fef∈𝑈TL
FEF

𝑒fef=𝑒

involvedfef

With fef ∈ 𝑈TL
FEF meaning that fef is a feasible FEF in TL. 748

From the unsafe(𝑒) set can also be defined the safe(𝑒) set as: 749

safe(𝑒) = 𝐶 ⧵ unsafe(𝑒). 750

By knowing all the interactions performed between in- 751

stances at runtime, OREO is able to perform a forward 752

Scommegna et al.: Preprint accepted to the Journal of Systems and Software Page 9 of 23



analysis of the possible FEF chains on the timeline. This753

allows OREO to identify the instances that may or may not754

take part in the propagation of the error. In practice, the755

number of safe and unsafe instances can help highlight a756

possibly too strong coupling among instances and suggest757

a need to redesign the response procedures.758

For the sake of concreteness, let us assume the timeline759

of Figure 3 and suppose that the instance of type 𝐶4 living760

during epochs [𝑅2, 𝑅4], called for simplicity 𝑐4, enters an761

erroneous state in step 𝑅2 due to a root error activation762

event 𝑒 = (𝑖, 𝑐4) experienced after the interaction 𝑖 with763

the instance of type 𝐶2. The OREO profiler will detect the764

instance of type 𝐶2 that lives in steps [𝑅6, 𝑅7] and the765

instance of type 𝑐1 as safe instances because there is no766

feasible FEF chain that propagates the error 𝑒 from 𝑐4 to767

them. Also, since 𝑒 is activated after the interaction 𝑖 in 𝑅2,768

the instance of type 𝐶5 living in 𝑅2 and the instance of type769

𝐶2 living in 𝑅1 and 𝑅2 will be classified as safe instances.770

The remaining instances will be classified as unsafe.771

OREO Profiling Feature 2: Identification of FEF Root772

Instances The OREO profiler is also able to extract the773

instances that may be the root of the underlying FEF chain.774

We consider an instance as the root of an FEF chain if775

it is the starting point of the whole propagation process776

(see Section 4.2). Identifying a restricted subset of possible777

root instances, considerably facilitate the fault localization778

process, which could be again particularly complex and779

time-consuming in real-world scenarios.780

Formally, given a Failure 𝐹 𝑟
𝑗 , the OREO profiling feature781

2 consists of identifying all possible instances that could lead782

to the activation of such failure. The output of the feature is783

the set 𝑟𝑜𝑜𝑡𝑠(𝐹 𝑟
𝑗 ):784

roots(𝐹 𝑟
𝑗 ) =

⋃

fef∈𝑈TL
FEF

𝐹 (fef)=𝐹 𝑟
𝑗

{root(fef)}

With 𝐹 (fef) function that returns the failure of fef.785

Starting from the timeline, OREO conducts a backward786

analysis of potential FEF chains that may have led to the787

failure, identifying all possible root causes. In practice,788

identifying the possible roots starting from a failure means789

obtaining all possible components within which the original790

fault that caused the failure is hidden.791

Considering the example of Figure 3, and assuming that792

a failure is manifested in step 10 by component 𝑐3. In a793

standard setting, the developer should start the fault detec-794

tion process from component 𝑐3. Nevertheless, in case of a795

failure induced by error propagation, 𝑐3 will not contain the796

fault that caused the observed failure. Consequently, once in-797

spected 𝑐3, without knowledge about communication among798

runtime instances, the fault might be difficult to spot through799

black-box techniques, or white-box techniques which do not800

consider runtime inter-instance communication. In presence801

of the timeline describing a scenario where at least one fail-802

ure occurred, the developer can exploit the OREO profiler to803

easily identify the subset of components candidate to be the804

actual faulty component. In the illustrative case depicted in 805

Figure 3, the failure of 𝑐3 at step 10 may be caused by a fault 806

hidden into components 𝑐2 (the one living during [𝑅1, 𝑅2]), 807

𝑐3, or 𝑐4 excluding components 𝑐1 and 𝑐5. 808

OREO Profiling Feature 3: Identification of FEF Sce- 809

narios Finally, the OREO profiler allows studying how a 810

fault hidden in a specific instance may spread throughout 811

the application if the error is activated at a specific time 812

step. In particular, starting from an instance as the root of 813

the hypothetical FEF chain, the profiler lists all the feasible 814

propagation paths. 815

Formally, given an instance 𝑗 ∈ 𝐽 and an interaction 816

𝑖 ∈ 𝐼 causing the activation of an error, the OREO profiling 817

feature 3 identifies all possible FEF scenarios that could 818

occur: 819

FEFscenarios(𝑗) =
{

fef ∈ 𝑈TL
FEF ∣ rootfef = 𝑗

}

For instance, let us suppose that in the timeline repre- 820

sented in Figure 3, component 𝑐4 activates a fault at step 𝑅3. 821

By executing OREO, the tool will automatically determine 822

all possible FEF scenarios with which the fault may have 823

propagated (see Figure 6). This is made possible through 824

OREO as, by knowing the states of all instances and the 825

communications among them, it is able to combinatorially 826

determine in an exhaustive manner which components may 827

have been influenced by the fault during the subsequent 828

requests (from 𝑅3 to 𝑅10 in the example of Figure 6). As 829

a corner case, in the scenario represented in Figure 6a, the 830

error is never propagated, and the correct state is restored 831

after step 𝑅4, when 𝑐4 ends its life. Conversely, if the error 832

successfully propagates in 𝑅4, components retain the effects 833

of an instance that no longer exists. In practice, the OREO 834

profiling feature 3 allows users to perform a what-if analysis 835

and visualize how an error might propagate within a given 836

timeline. This feature can then indicate how the business 837

logic could be susceptible to error propagation. 838

4.4. OREO Expressiveness and Properties 839

The OREO tool, along with its proposed formaliza- 840

tion, enables offline monitoring of the behavior of run- 841

time instances residing in the business logic of a software- 842

intensive system. Specifically, the timeline abstraction ex- 843

tracted through OREO allows to use various specification 844

languages to define properties to monitor both online and 845

offline the system of interest. For example, given a timeline 846

TL = ⟨𝑇 , 𝐶, 𝐽 , 𝐼, 𝑂⟩, the partial order identified by 𝑂 allows 847

to monitoring temporal ordering properties between direct or 848

transitive interactions in 𝐼 . Specifying such properties can be 849

accomplished using temporal logic, regular expressions, or 850

other more expressive variants, e.g., CaRet [22], Eagle [23], 851

or frequency Linear-time Temporal Logic [24]. 852

Additionally, the total set 𝑇 of points in time at which 853

events can occur, and the associated set of discrete epochs 854

𝑅 (see Section 3.1), allows for the specification of discrete- 855

time and real-time properties allowing to use, for instance, 856

specification languages like Metric Temporal Logic. 857

Scommegna et al.: Preprint accepted to the Journal of Systems and Software Page 10 of 23



(a) (b)

(c) (d)

error
propagation

error
activation

erroneous state

Figure 6: Possible FEF chain propagations in case of error activation of instance 𝑐4 at step 𝑅3 in the usage scenario represented
in Fig. 3.

Regarding instead the reliability of OREO, in Section 4.3858

we formalized the problem of error propagation on the time-859

line, by following the definitions of fault, error, and failure860

identified by Avizenis et al [18] (see also Section 1). On top861

of the formalization of error propagation, we also described862

three exemplary profiling features that are provided out of863

the box in the approach implementation to support the un-864

derstanding and visualization of different error propagation865

scenarios. The FEF chain formalization adds expressiveness866

to the approach making it possible to specify reliabiliy867

properties on the timeline. For example, it is possible to868

check if a component ever becomes the root of a failure, or869

if a component participates in a FEF chain.870

In practice, monitors can be implemented by utilizing the871

timeline representation generated by the OREO tool. In this872

sense, specifying monitors in OREO is similar to specifying873

monitors with AspectJ or JavaMOP [25]. The difference is874

that, once OREO is plugged in, the timeline is automatically875

extracted without the need to manually define pointcuts,876

and the verdict can be computed directly from the timeline877

object.878

5. OREO Execution Evaluation 879

To evaluate the OREO tool, we conducted an experimen- 880

tal proof of concept to estimate its applicability. During this 881

experiment, we aimed to assess: (i) the effort required by 882

OREO to instrument the target software-intensive system, 883

(ii) its capability to extract useful insights about potential 884

error propagation phenomena, and (iii) the cost in terms of 885

time and memory overhead that OREO entails. 886

Our results show that the OREO tool offers a seamless 887

plug-and-play instrumentation process, advanced and exten- 888

sible profiling capabilities, and minimal overhead in terms of 889

delay and resource utilization. 890

5.1. Research Questions 891

The evaluation is intended to research the extent to 892

which the theoretical framework of OREO is applicable, 893

and serves as a stepping stone to bridge the purely formal 894

definition of the approach with a hands on practical viability 895

experimentation. 896

Scommegna et al.: Preprint accepted to the Journal of Systems and Software Page 11 of 23



The evaluation is carried out to answer the following897

research questions (RQs), which guided the design of the898

evaluation process:899

• 𝑅𝑄0: What is the upfront effort needed to apply the900

OREO tool?901

• 𝑅𝑄1: To which extent is OREO able to get insight into902

faults and error propagations?903

• 𝑅𝑄2: To what extent is OREO scalable?904

With 𝑅𝑄0, the objective is to assess the extent to which905

OREO can be applied to software architectures of different906

sizes, and if the effort required to apply the tool is related907

to the size of the system under analysis. The term size of908

an application refers to the number of components managed909

by the container for automatic lifecycle management and910

dependency injection, as well as the source lines of code911

(SLOC) and pages. The rationale behind 𝑅𝑄0 is whether912

the effort for instrumentation increases with the number of913

potential elements to observe.914

With 𝑅𝑄1, we want to show how the OREO profiler can915

be utilized to execute reliability analyses. Specifically, we916

investigate how the tool supports fault detection processes,917

and if the analysis can be used for error propagation identi-918

fication among business logic components.919

With 𝑅𝑄2, we aim to assess to which extent OREO’s920

performance is independent of the size of the application921

under analysis.922

5.2. Experimental Objects923

To evaluate the effectiveness and applicability of OREO,924

we selected three distinct software projects as experimental925

subjects. This selection was guided by three primary criteria:926

(i) JEE implementation to ensure compatibility with the927

functional requirements of OREO, (ii) availability of source928

code to configure OREO, and (iii) diversity in scope and size929

to test OREO across varied operational scenarios. The three930

experimental objects considered are:931

• Toy app: A simple, small-scale application devel-932

oped in house specifically for this experimentation.933

The source code is available in the replication pack-934

age. Functionally, it permits the insertion of numbers935

among different pages and performs calculations on936

them, e.g., to verify if the sum of the last two numbers937

inserted is odd. It consists of a user interface made of 6938

main pages, a business logic made of 8 components, 5939

of which act as controllers serving page requests, and940

3 additional helper components. Toy app is made of941

330 source lines of code (SLOC).942

• Books app: an exemplary, mid-sized, application pre-943

sented in the book by Muller et al. [26]. Book app is944

an application that manages and lists book reviews.945

Book app comprises 15 pages, 15 components, and a946

domain model made of 6 entities. Book app is made of947

2818 SLOC.948

• Empedocle system: a large-scale real-world software 949

project. Empedocle is an Electronic Health Record 950

(EHR) System that allows the management of med- 951

ical examinations and medical staff. It is a real- 952

world system characterized by a Technology Readi- 953

ness Level 9 (TRL9) and has been in use since 954

2011 in a major hospital in the Tuscany region of 955

Italy. The software project was previously utilized 956

in other scientific studies, e.g., in the work of Patara 957

et al. [27] and in the work of Fioravanti et al. [28]. 958

The application comprises 35 pages, 30 DAOs and 35 959

domain classes supported by a wide internal library of 960

approximately 200 classes. The implementation of the 961

software project is currently closed-source. Therefore, 962

while used for the evaluation as a real-world industrial 963

evaluation subject, we are not able to make the source 964

code public as part of the replication package of this 965

study. Empedocle is made of 85718 SLOC. 966

The size diversity of the experimental objects allowed us to 967

easily study the behavior of OREO in a simple application 968

(Toy App), assess its viability in a realistic scenario (Book 969

App), and finally, evaluate its capabilities in a large-scale real- 970

world project (Empedocle). 971

5.3. Experimental Process 972

In this section, we outline the experimental procedures 973

employed to investigate the research questions delineated in 974

Section 5.1. All the experiments were conducted entirely on 975

a single laptop equipped with an Intel i7-8750H (2.20GHz) 976

CPU and 16 GB 2.666 MHz DDR4 of memory. 977

5.3.1. Upfront Effort Needed to Run the OREO Tool 978

(𝑅𝑄0) 979

To evaluate the effort required to run the OREO tool, we 980

aim to determine if, and to what extent, this effort depends 981

on the static characteristics of the software-intensive system 982

being monitored. Specifically, we are interested in assessing 983

the effort in relation to the SLOC, the number of components 984

to observe, and the number of pages of the target system. To 985

achieve this goal, we rely on the three experimental objects 986

presented in Section 5.2. These objects differ significantly 987

in terms of SLOC, number of components, and number 988

of pages: a small software-intensive system (Toy App), a 989

medium-sized system (BookApp), and a large real-world 990

system (Empedocle). 991

To address the research question 𝑅𝑄0, we instrumented 992

and subsequently executed OREO on the three experimental 993

objects. More precisely, the timelines for each application 994

were generated by considering the most common use case 995

scenarios covered by the three software projects under anal- 996

ysis. Further details on the use case scenarios, along with 997

a discussion and results of the experimental procedure, are 998

provided in Section 5.4. 999

5.3.2. Profiling the Timelines (𝑅𝑄1) 1000

To address research question 𝑅𝑄1, we aim to evaluate 1001

the extent to which the OREO tool and its profiling features, 1002

Scommegna et al.: Preprint accepted to the Journal of Systems and Software Page 12 of 23



as described in Section 4.3, can support the analysis of error1003

propagation within a system. Specifically, we seek to deter-1004

mine how insights that are challenging to deduce from code1005

analysis can be made explicit through OREO and its timeline1006

analysis. The objective of this experiment is not only to1007

demonstrate the practical utility of the profiling features but1008

also to illustrate how OREO can serve as a foundation for1009

a more structured analysis. During the demonstration, we1010

will utilize both the profiling features and the insights gained1011

from their combination.1012

As shown in the example depicted in Section 2.1, it is1013

challenging to determine, in the event of a failure, which1014

components might have caused the malfunction and which1015

are definitely not involved in the propagation scenario.1016

Therefore, we formalize the concepts of root candidates, un-1017

safe instances, and currently unsafe instances. In particular,1018

assuming the failure 𝐹 𝑗
𝑟 at epoch 𝑟 manifested by an instance1019

𝑗 ∈ 𝐽 of a certain component type 𝑐 ∈ 𝐶 , we identify the1020

following information:1021

• Root Candidates: this identifies the instances that1022

could be the root of the FEF chain leading to the1023

manifestation of the considered failure 𝐹 𝑗
𝑟 . Formally,1024

it consists of the cardinality of set roots(𝐹 𝑗
𝑟 ), obtained1025

using OREO Profiling Feature 2. Conceptually, it pro-1026

vides a measure of how complicated it is to identify1027

the actual component responsible for the failure.1028

• Unsafe: this identifies all instances, both those living
at the time of the failure and those no longer available,
that could be involved in the FEF chain that led to the
manifestation of the considered failure 𝐹 𝑗

𝑟 . Formally,
the Unsafe column consists of the cardinality of the
set:

⋃

𝑗∈roots(𝐹 𝑗
𝑟 )

unsafe(𝑗, 𝑖)

The Unsafe instances set is derived by integrating1029

OREO Profiling Feature 1 and OREO Profiling Fea-1030

ture 2.1031

• Currently Unsafe: this identifies the instances, which1032

could be involved in the FEF chain leading to the1033

manifestation of the considered failure 𝐹 𝑗
𝑟 , living at1034

the same epoch 𝑟 ∈ 𝑅 as 𝐹 𝑗
𝑟 .1035

Formally, the Currently Unsafe column consists of the
cardinality of set:

{𝑗 ∈
⋃

𝑗∈roots(𝐹 𝑗
𝑟 )

unsafe(𝑗, 𝑖)|𝑟 ∈ 𝑙𝑗}

Where 𝑙𝑗 is the interval of epochs in which j lives.1036

The Currently Unsafe instances set is derived by inte-1037

grating OREO Profiling Feature 1 and OREO Profil-1038

ing Feature 2.1039

The results obtained and the related discussion are out-1040

lined in Section 5.5.1041

Figure 7: Timeline instance extracted from Toy App.

Figure 8: Timeline instance extracted from Books App.

5.3.3. Scalability of the OREO Tool (𝑅𝑄2) 1042

To answer 𝑅𝑄2, we investigate if, and to what extent, the 1043

user experience could be compromised by the execution of 1044

OREO in software architectures characterized by different 1045

sizes. 1046

The experiment was conducted on the three experimental 1047

objects in order to measure how the tool behaves in different- 1048

sized software subjects. In more detail, for each of the three 1049

applications we have executed 100 requests and measured 1050

the impact that OREO induced at execution time during 1051

the response to each request. The requests measured in the 1052

experimentation were selected by executing representative 1053

use cases of the application under examination (see also in- 1054

ternal threats to validity in Section 5.7.2 for this point). This 1055

approach allows for obtaining a comprehensive overview of 1056

the potential requests that could be made on the application. 1057

We focus on both time overhead and memory overhead. 1058

To measure the time overhead, we selectively recorded the 1059

operation time of OREO during each request. For memory 1060

overhead, we repeated the same 100 requests in the exact 1061

same order twice for each experimental subject: once with 1062

Scommegna et al.: Preprint accepted to the Journal of Systems and Software Page 13 of 23



Figure 9: Timeline instance extracted from Empedocle System.

the OREO tool and once without it. Results and discussion1063

are reported in Section 5.6.1064

5.4. Results of Instrumentation Effort Evaluation1065

(𝑅𝑄0)1066

To address research question 𝑅𝑄0, as outlined in Sec-1067

tion 5.3.1, we instrumented and executed OREO on top1068

of the three considered applications to measure the appli-1069

cability and effort required to run the tool. Figures 7, 81070

and 9 represent examples of timelines extracted during the1071

utilization of the Toy app, the Book app and the Empedocle1072

system, respectively. The resulting timelines were obtained1073

following the primarily standard uses of the applications. To1074

showcase the functioning of OREO, for Toy app we chose as1075

concrete example a timeline capturing the execution of the1076

standard use case scenario where the application checks the1077

disparity of the sum of two variables provided in input by the1078

user. This exemplary scenario execution visualized through1079

OREO is depicted in Figure 7. For the Books app instead,1080

we consider as concrete example a use case scenario where1081

the user searches for a specific book and afterward reads1082

the reviews of the chosen book. This illustrative scenario1083

execution visualized through OREO is depicted in Figure 8.1084

Finally, for the Empedocle system, we selected as execution1085

trace the once corresponding to the login of an authorized1086

user, followed by the examination of a medical record. The1087

execution of this latter scenario visualized through OREO,1088

is documented in Figure 9.1089

The represented timelines demonstrate the ability of1090

OREO to observe and extract the evolution of the business1091

logic in all three cases, regardless of the size of the applica-1092

tion and the number of components living simultaneously.1093

An exemplary case is represented by the timeline of the1094

Empedocle System in Figure 9. The timeline represented1095

was originally too cumbersome to be represented graphically1096

due to the high number of both components and methods. To 1097

ease the interpretability of the figure, the depicted scenario 1098

does not include DAOs, converters, and context components. 1099

A link between two components represents in this case the 1100

existence of one or more interactions. 1101

The experimental results demonstrate, in response to 1102

𝑅𝑄0, that the effort needed to operate OREO remains 1103

constant and minimal, regardless of the number of SLOC, 1104

components, or pages in the target application. Therefore, 1105

running the tool requires an initial configuration phase that 1106

is independent of the size of the target application. More 1107

precisely, the basic configuration of OREO requires only 1108

specifying OREO as the CDI extension of the target applica- 1109

tion. The procedure can be deemed as rather straightforward, 1110

as it consists only in copying a single plain file inside the 1111

metadata directory of the target application. Nevertheless, 1112

it is worth mentioning that with the basic configuration, 1113

OREO observes all the actions and procedures in the busi- 1114

ness logic, even those concerning components belonging to 1115

other libraries and processes over which the developer has 1116

no control. The responsibility to specify a narrower group 1117

of components to observe is left to the OREO user. The 1118

selective observation of the business logic can be configured 1119

with ease from the OREO settings using a list of strings or 1120

regular expressions. 1121

From the data collected to answer 𝑅𝑄0, we evince that 1122

using the OREO tool with a JEE application is trivial. The 1123

effort required to run the tool, even considering possible 1124

custom configurations, is minimal and does not depend on 1125

the size of the target software architecture. 1126

Scommegna et al.: Preprint accepted to the Journal of Systems and Software Page 14 of 23



Step Failed Scope
Instances

ComponentType Root Unsafe Currently Unsafe Currently Safe
Candidates (%) (%) (%)

1
loggedSessionBean @SessionScoped 1 33.33 33.33 66.66

appCounter @ApplicationScoped 1 33.33 33.33 66.66
navController @RequestScoped 1 33.33 33.33 66.66

2
loggedSessionBean @SessionScoped 1 25 33.33 66.66

appCounter @ApplicationScoped 1 25 33.33 66.66
meanController @ConversationScoped 1 25 33.33 66.66

3

loggedSessionBean @SessionScoped 1 20 25 75
appCounter @ApplicationScoped 1 20 25 75

meanController @ConversationScoped 2 40 50 50
navController @RequestScoped 2 40 50 50

4
loggedSessionBean @SessionScoped 3 60 66.66 33.33

appCounter @ApplicationScoped 1 20 33.33 66.66
meanController @ConversationScoped 3 60 66.66 33.33

5

loggedSessionBean @SessionScoped 3 85.71 100 0
appCounter @ApplicationScoped 6 85.71 100 0

meanCalculator @RequestScoped 5 85.71 100 0
meanController @ConversationScoped 4 85.71 100 0
navController @RequestScoped 6 85.71 100 0

6
loggedSessionBean @SessionScoped 3 85.71 100 0

appCounter @ApplicationScoped 6 85.71 100 0
meanController @ConversationScoped 4 85.71 100 0

7

loggedSessionBean @SessionScoped 3 75 75 25
appCounter @ApplicationScoped 6 75 75 25

meanController @ConversationScoped 4 75 75 25
navController @RequestScoped 1 12.5 25 75

8 loggedSessionBean @SessionScoped 3 75 100 0
appCounter @ApplicationScoped 6 75 100 0

Table 1
Step-wise failure manifestation analysis.

𝐑𝐐𝟎 Takeaways (Instrumentation Effort)
�Takeaway 0.1: The effort required to apply the OREO tool
is independent of the target software system.
� Takeaway 0.2: The instrumentation procedure is minimal
and straightforward.
� Takeaway 0.3: Custom configurations that modify the
default behavior of OREO remain minimal and are easy to
configure.

5.5. Results of OREO Profiling Capabilities (𝑅𝑄1)1127

According to Section 5.3.2, to answer research question1128

𝑅𝑄1, we applied OREO to a concrete example in order1129

to provide insights regarding the behavior of the tool and1130

its practical application. The results and an accompanying1131

discussion are provided by considering the timeline of Fig-1132

ure 7 extracted during the execution of Toy app and already1133

presented in Section 5.4.1134

Table 1 shows the results of the OREO tool analysis,1135

varying both the steps and the components in which the1136

failure is hypothetically manifested during the execution of1137

the scenario represented in Figure 7. In more detail, starting1138

from the extracted timeline of Figure 7, we considered all1139

the possible failure scenarios; i.e., all the possible failures1140

𝐹 𝑟
𝑗 with 𝑟 ∈ 𝑅 and 𝑗 ∈ 𝐽 . For each failure scenario,1141

we exploited the OREO profiling features 1 and 2 outlined 1142

in Section 4.3 to gain insight about the state of both the 1143

instances living at the time of the failure manifestation and 1144

the past instances no longer present in memory. 1145

In particular, assuming a failure 𝐹 𝑗
𝑟 at step 𝑟 manifested 1146

by an instance 𝑗 ∈ 𝑗 of a certain component type 𝑐 ∈ 𝑐, 1147

namely failed component type in the table, we identify 1148

the number of root candidates, the percentage of unsafe, 1149

currently unsafe and currently safe instances for each failed 1150

component type at each step of the timeline. 1151

Table 1 is a demonstrative table of the capabilities of 1152

the OREO profiler and summarizes only some of the infor- 1153

mation that can be obtained with the proposed tool. OREO 1154

is able not only to calculate the number or percentage of 1155

involved instances but also to identify the specific instances. 1156

For example, it is able to identify not only the number 1157

but also the specific instances that are candidates to be 1158

the root instance for a FEF chain. The decision to report 1159

only aggregated data such as percentages is due to space 1160

constraints. 1161

Table 2 shows the number of possible FEF chain paths 1162

that a fault activated at a specific time step into a specific 1163

component may generate. For each set of paths discovered, 1164

Scommegna et al.: Preprint accepted to the Journal of Systems and Software Page 15 of 23



ComponentType Scope TimeSteps #Paths Total Errors
Worst Case

loggedSessionBean Session
[1, 4] 13 5
[5] 5 5
[6, 8] 1 1

AppCounter Session [1, 5] 4 3
[6, 8] 1 1

MeanCalculator Request [5] 6 4

MeanController Conversation

[2, 3] 32 6
[4] 16 5
[5] 8 5
[6, 7] 1 1

NavController Request

[1] 1 1
[3] 17 6
[5] 2 2
[7] 1 1

Table 2
Step-wise error activation analysis.

the total number of erroneous instances is reported, assum-1165

ing the worst-case propagation condition, i.e., when errors1166

completely follow the cascade propagation.1167

Results demonstrate that the potential fragility of the1168

business logic, i.e., the number of root candidates, and the1169

percentage of unsafe / currently unsafe instances, is related1170

to the sequence of interactions between components. In ad-1171

dition, results demonstrate that the scope of the components1172

plays an important role in the propagation paths, since it1173

defines the lifespan of the instance and then indirectly the1174

time that an error can last in the business logic. For the same1175

reason, also the interactions have a significant impact since1176

the error survives beyond the life of its component. OREO1177

is able to identify these aspects and highlight potential1178

vulnerabilities that manifest in specific timelines.1179

From the experiment conducted in this section, address-1180

ing 𝑅𝑄1, we observed that the OREO tool is capable of1181

conducting a comprehensive reliability analysis of the busi-1182

ness logic of an application. OREO allows to identify the1183

subset of possible root instances automatically, lightening up1184

the combinatorial space and consequently the fault detection1185

processes. In addition, the tool provides valuable insights1186

into how the business logic may be affected by an error prop-1187

agating among components. Specifically, OREO identifies1188

successfully safe and unsafe instances at a specific step and1189

lists all the possible FEF scenarios.1190

𝐑𝐐𝟏 Takeaways (Profiling Capabilities)
� Takeaway 1.1: OREO provides valuable insights into the
state of the system starting from failure manifestations.
� Takeaway 1.2: OREO also enables what-if analysis to
study hypothetical error propagation scenarios over a time-
line.
� Takeaway 1.3: OREO allows for the combination and
extension of the proposed profiling features to obtain struc-
tured information and insights.

5.6. Results of OREO Scalability Evaluation1191

(𝑅𝑄2)1192

As described in Section 5.3.3, to address research ques-1193

tion 𝑅𝑄2, we measured the impact of the OREO tool on the1194

three experimental objects. Table 3 shows the results of the 1195

experiments. Specifically, for each application, the number 1196

of source lines of code (SLOC) and their overhead are re- 1197

ported. The total time overhead expressed as a percentage is 1198

available in the “Time Overhead” column. In addition, in the 1199

“Instances Overhead” and “Methods Overhead” columns, 1200

we report the mean overhead and related standard deviation 1201

of the two steps by which OREO operates on each request. 1202

The role and significance of these two steps will be explained 1203

shortly. By summing the mean of the two columns, it is 1204

possible to obtain the overall time overhead in terms of 1205

milliseconds. 1206

Looking the results, at first glance, it might seem that 1207

the time overhead in milliseconds strictly depends on the 1208

size of the application under observation, i.e., the number of 1209

SLOC. However, a deeper understanding of the OREO ob- 1210

servation process shows that the overhead actually depends 1211

on the complexity of the individual response processes. 1212

With complexity we denote the combination of the internal 1213

states of the software under analysis when a request arrives, 1214

i.e., the number of living instances (column “Instances per 1215

Request”), and the specific process that the response implies, 1216

i.e., the number of methods called (column “Methods per 1217

Request”). 1218

More in detail, OREO observes the currently living in- 1219

stances at the beginning and the end of the response process 1220

in order to derive newly instantiated and destroyed instances. 1221

The overhead of this step is indicated by the “Instances 1222

Overhead” column. This procedure in principle depends 1223

on the number of living components observed during the 1224

response process. However, experiments highlight that this 1225

phase represents an overhead that varies from 0.1 to a 1226

maximum of 0.9 ms independently of the number of living 1227

instances. 1228

In addition to this baseline time overhead, OREO is also 1229

triggered every time a method is called to register both the 1230

caller and the callee component. This introduces a delay that 1231

is strongly related to the number of methods invoked within 1232

the specific response process. The time overhead of this step 1233

is indicated by the “Methods Overhead” column. Concretely, 1234

this results in a minimum delay of 0.1 ms observed with only 1235

one method involved, and a maximum of 49.2 ms observed 1236

for 383 methods called in a single request. 1237

The dependency of the time overhead on the complexity 1238

of each specific response process represents affordable cost 1239

in terms of scalability and performance. As can be also ob- 1240

served in the three applications considered, the complexity 1241

tends to remain treatable as the SLOC metric grows. The 1242

scalability and the lightweight nature of OREO are further 1243

confirmed by the percentage time overhead, which remains 1244

below 7% for all three applications. 1245

Regarding the overhead in terms of memory usage in- 1246

troduced by OREO, in Table 3, we have included the mean 1247

and standard deviation of memory overhead expressed in 1248

megabytes (“Memory Overhead (MB)”), as well as the over- 1249

head expressed as a percentage (“Memory Overhead (%)”). 1250

As can be seen, the memory overhead for Book app is reported 1251

Scommegna et al.: Preprint accepted to the Journal of Systems and Software Page 16 of 23



Application SLOC
Instances Instances Methods Methods Time Memory Memory

per Request Overhead per Request Overhead Overhead Overhead Overhead
𝜇 ± 𝜎 𝜇 ± 𝜎 (ms) 𝜇 ± 𝜎 𝜇 ± 𝜎 (ms) (%) (MB) (%)

Toy App 330 3.49 ± 0.69 0.16 ± 0.11 3.43 ± 3.04 0.43 ± 0.38 6.51 0.85 ± 3.13 7.97
Book App 2818 2.76 ± 0.58 0.16 ± 0.10 34.34 ± 37.27 4.34 ± 4.70 6.96 −18.41 ± 39.35 −34.46
Empedocle 85718 8.12 ± 1.89 0.812 ± 0.33 127.33 ± 97.73 16.14 ± 12.29 6.08 31.64 ± 36.07 16.62System

Table 3
OREO overhead metrics in the three applications considered, with results obtained from 100 requests per application.

as negative. This counterintuitive result does not demon-1252

strate that OREO leads to better utilization of RAM. Instead,1253

it is the combined outcome of OREO’s internal functioning1254

and Java’s Garbage Collector. As previously mentioned in1255

this section, OREO observes the currently living instances1256

twice for each request: once at the beginning and once at1257

the end. During each observation, OREO creates as many1258

objects as there are currently living instances. These objects1259

are then used to build the current step of the timeline and are1260

not used beyond that point. The observations made by OREO1261

thus, increase the rate at which unreferenced objects are1262

allocated in heap memory, leading to more frequent garbage1263

collector activations. The increased frequency of garbage1264

collector activation accounts for the lower average memory1265

overhead in the Books app. However, the variation between1266

the highest peak observed during executions with and with-1267

out OREO never surpasses 15 percent. This reinforces the1268

notion that OREO maintains its efficiency and lightweight1269

nature, even from a memory perspective.1270

In conclusion, the experiments conducted in this section1271

demonstrate that OREO introduces negligible overhead to1272

the user experience. In response to 𝑅𝑄2, our results demon-1273

strate that the OREO tool is scalable, introducing minimal1274

overhead across all analyzed applications, regardless of their1275

size. The measured overhead would be further reduced when1276

we take into account that all the documented experiments1277

were conducted on a personal computer. If these experiments1278

were to be performed on high-capacity servers instead of a1279

personal laptop, we anticipate that the results would demon-1280

strate an even greater enhancement.1281

𝐑𝐐𝟐 Takeaways (Scalability)
� Takeaway 2.1: OREO introduces a negligible response
overhead for the user experience.
� Takeaway 2.2: The overhead does not depend on the size
(SLOC) of the application under monitoring but only on the
complexity of the individual response processes.
� Takeaway 2.3: The memory overhead caused by OREO
remains negligible.

5.7. Threats to Validity1282

In this section, we discuss the most relevant threats to1283

validity that characterised the evaluation of OREO. The1284

threats to validity follow the classification of Wohlin et1285

al. [29], complemented by reliability considerations [30]. As1286

suggested in recent literature, albeit presented towards the1287

end of the evaluation section, threats were considered from 1288

the earliest stages of the experimental research design [31]. 1289

5.7.1. Conclusion Validity 1290

In order to mitigate potential threats to conclusion va- 1291

lidity, only elemental metrics (e.g., number of failures) and 1292

data analyses (e.g., percentages) were utilized to assess the 1293

viability of the approach. This limited potential experimen- 1294

tal threats related to confounding factors originating from 1295

measure reliability or statistical result analyses (e.g., violated 1296

statistical test assumptions). Random result irrelevancies 1297

introduced due to the use of a specific experimental subject 1298

were mitigated by considering three different applications, 1299

characterized by heterogeneous size, context, and prove- 1300

nance. To further mitigate unknown variables that may have 1301

influenced the results, the collected data and their trends 1302

was post hoc scrutinized, to ensure that evident conclusion 1303

pitfalls in the collected data, such as anomalies and outlier 1304

values, were carefully understood and motivated. 1305

5.7.2. Internal Validity 1306

Threats to internal validity may lie in the suboptimal 1307

representativeness of the use case scenarios used to conduct 1308

the failure manifestation analysis (see also Section 5.3.2 and 1309

Section 5.5). To mitigate potential threats of such nature, we 1310

applied OREO on three application of different nature, by 1311

conducting a tradeoff between both size versus project fa- 1312

miliarity, and internal versus external validity. Therefore, the 1313

experimentation ensured that, at the cost of loosing general- 1314

izability (see also Section 5.7.2), researchers possessed suf- 1315

ficient knowledge to select representative use case scenarios 1316

for the application under analysis. Another potential threat 1317

to internal validity is constituted by potentially unknown 1318

historical threats, i.e., that an experimental execution could 1319

have influenced a subsequent one by leaving instantiated 1320

objects alive in volatile memory between two executions, 1321

therefore influencing future results. To mitigate this threat, 1322

all processes related to an experimental run was terminated 1323

before a subsequent one took place. 1324

Additionally, the construction of the OREO tool itself 1325

could pose a threat to internal validity. Specifically, there 1326

might be bugs within the implementation that compromise 1327

the extraction and analysis of timelines. To mitigate this 1328

threat, we relied on robust and official technologies for in- 1329

formation extraction and session management. Specifically, 1330

Scommegna et al.: Preprint accepted to the Journal of Systems and Software Page 17 of 23



we used Weld, the main reference implementation of CDI 4,1331

and implemented OREO as an extension of CDI through the1332

official Service Provider Interface (SPI) 5. This approach1333

allowed us to leverage many built-in, tested, and reliable1334

functionalities and information extraction mechanisms.1335

5.7.3. Construct Validity1336

To mitigate potential threats related to the representa-1337

tives of the theoretical construct investigated, the experimen-1338

tation was designed prior the experimental object selection,1339

and experimental objects were not modified in any way. One1340

of the experimental objects included a real-life large-scale1341

industrial project that, albeit the experimentation focused on1342

the viability assessment of the approach, could be deemed1343

representative of a concrete instance on which OREO could1344

be applicable in practice. Construct validity threats related to1345

the definition of experimental artefacts (e.g., step-wise fail-1346

ures and errors) were mitigated by adopting widely adopted1347

and de facto standard definitions in software testing [32].1348

As threat related specifically to 𝑅𝑄0, regarding the effort1349

required to apply OREO, we note that the tool was applied1350

to the experimental objects by a researcher who was already1351

familiar with the tool. Therefore, while the application of the1352

tool started from a clean slate, other experimental subjects,1353

e.g., users inexperienced with the tool may encounter ad-1354

ditional difficulties to apply the tool in practice. However,1355

given that executing the tool consists of five atomic and1356

well-documented steps in the companion package, we do1357

not deem this threat as considerably influencing the results1358

collected for 𝑅𝑄0.1359

5.7.4. External Validity1360

The experimental results reported in this study must be1361

interpreted in light of some external validity threats. While1362

applications of different context, size, and provenance were1363

considered, we do not claim complete generalizability of the1364

results. As a first prominent threat to external validity, the1365

entirety of the applications considered rely on JEE). As such,1366

with the results provided, we do not claim the extensibility of1367

the experimental findings to applications implemented with1368

other technologies. Future research should be conducted1369

to assess if, based on the positive results presented, the1370

theoretical framework on which OREO relies can be applied1371

to programs implemented with other technologies. Similarly,1372

while the presented results may apply to applications of1373

similar size, nature, and context, and one of the experimental1374

objects consisted of a large-scale real-life industrial project,1375

additional experimentation should be conducted to further1376

strengthen the generalizability of the results.1377

While the provided OREO implementation enables seam-1378

less integration with Java/Jakarta Enterprise Edition systems1379

while maintaining flexibility and scalability, it can also be1380

adapted to alternative technologies. The timeline abstrac-1381

tion is inherently language-agnostic and independent from1382

4https://weld.cdi-spec.org/ Accessed 6th February
5https://docs.jboss.org/weld/reference/latest/en-US/html/ri-spi.

html Accessed 6th February

the specific component management framework used (e.g., 1383

Java/Jakarta EE or Spring Dependency Injection). Rather 1384

than incorporating Java or JEE specific constructs, it models 1385

runtime side effects produced by such constructs. For exam- 1386

ple, instead of including component scope annotations (e.g., 1387

@SessionScoped or @RequestScoped), it represents the runtime 1388

lifespan behaviors these annotations induce. Similarly, it 1389

excludes CDI dependency injection annotations and instead 1390

captures concrete runtime dependencies between objects 1391

via method invocations. The generic nature of the timeline 1392

allows abstraction not only from component management 1393

frameworks but also from the programming language used 1394

to implement the system. As a result, the timeline represents 1395

parallel execution traces within a software system, regardless 1396

of its implementation language (e.g., Java, Python, or C#). 1397

Since the timeline is technology-agnostic, its representation 1398

and associated profiler (the timeline and profiler packages 1399

in Figure 5), though implemented in Java, can be used as-is 1400

in other systems without sacrificing functionality. 1401

The only implementation-specific aspect of OREO is 1402

the strategy used to extract the information for the timeline. 1403

This dependency on the technology used by the system 1404

is inherently unavoidable. However, the design of OREO 1405

minimizes the effort required to integrate the framework 1406

with other technologies. For Java-based systems that use 1407

frameworks other than JEE (e.g., Spring), the integration 1408

process would require just an additional step after instru- 1409

mentation: incorporating JEE dependencies into the sys- 1410

tem. While this approach ensures flexibility, the additional 1411

overhead has not been evaluated, and OREO may perform 1412

less optimally than indicated by the results presented in this 1413

work. The potential performance degradation stems from the 1414

continued reliance on the JEE framework for information 1415

extraction. To achieve optimized information extraction, it 1416

would be advisable to adapt these mechanisms to the specific 1417

framework in use. Specifically, this would involve overrid- 1418

ing the two core extraction methods: i) manageMethodCall() 1419

in the MethodCallInterceptor class, for extracting the in- 1420

voked methods; ii) retrieveContextualInstances() in the 1421

InstanceFinder class, for extracting the currently active soft- 1422

ware objects. 1423

If the system is implemented in a different programming 1424

language, most of the OREO code can still be utilized 1425

even for the timeline construction. Specifically, it will be 1426

necessary to implement a process to extract from the system 1427

the active methods and objects during each request. Once the 1428

information has been extracted from the system, it will be 1429

sufficient to invoke the core extraction methods mentioned 1430

above. 1431

5.7.5. Reliability 1432

To empower the independent scrutiny and reproduction 1433

of the reported results by other researchers, both the OREO 1434

tool and the experimental objects utilized (with exclusion 1435

of the Empedocle System due to non-disclosure agreement) 1436

is made online as a companion package of this study (see 1437

Section 1). 1438

Scommegna et al.: Preprint accepted to the Journal of Systems and Software Page 18 of 23

https://weld.cdi-spec.org/
https://docs.jboss.org/weld/reference/latest/en-US/html/ri-spi.html
https://docs.jboss.org/weld/reference/latest/en-US/html/ri-spi.html


6. OREO Usage Scenario1439

The ease of use of OREO, combined with its lightweight1440

nature (see Section 5 for further details), enables its applica-1441

tion across a wide range of scenarios. A fundamental use1442

case involves employing OREO as a validation tool for a1443

system under development. Many of the mechanisms that1444

OREO is capable of making explicit are not easily observ-1445

able through source code analysis alone. The availability of1446

a tool that provides a runtime description of the behavior of1447

the system along with reliability metrics facilitates analysis1448

and assists in identifying unexpected behaviors and design1449

deficiencies prior to the deployment in a production envi-1450

ronment.1451

Due to its plug-and-play nature, OREO enables the in-1452

strumentation of software-intensive systems without requir-1453

ing prior knowledge of their implementation details. In such1454

cases, OREO can be utilized as a tool to visualize and under-1455

stand the runtime behavior of even highly complex software-1456

intensive systems without necessitating an understanding1457

of their internal structure or requiring modifications to the1458

original source code.1459

Furthermore, the lightweight nature of OREO, coupled1460

with its ability to extract meaningful insights for the analysis1461

of Fault-Error-Failure chains, enables its application as a1462

continuous monitoring tool of software-intensive systems1463

in production. This scenario enhances the long-term under-1464

standing of system behavior. Additionally, in the event of a1465

failure, OREO allows for the reconstruction and analysis of1466

all potential error propagation scenarios, thereby supporting1467

failure reproducibility, detection, and the removal of rare and1468

difficult-to-trace faults, such as heisenbugs.1469

7. Envisioned applications and extension for1470

OREO Tool1471

In this paper, we present a novel timeline abstraction that1472

captures the evolution of the business logic of a software1473

architecture. Additionally, a runtime verification framework1474

that extracts and analyzes timeline instances was proposed.1475

The framework extracts at runtime the timelines from the1476

target application, enabling the analysis of the runtime be-1477

haviour of the business logic of the application. Finally,1478

a concrete implementation of the framework for JEE ar-1479

chitectures, namely OREO, is provided in the form of an1480

open-source tool. OREO includes a profiler module en-1481

abling offline runtime monitoring strategies for fault detec-1482

tion and error propagation analysis of the business logic.1483

The implementation of OREO provided with this research1484

was designed be applied with minimal effort to a Java/JEE1485

software-intensive systems (see also Section 1). However,1486

we conjecture that the theoretical foundation OREO re-1487

lies upon can be applied also to software-intensive systems1488

implemented with different object-oriented languages, e.g.,1489

Kotlin and C#. As future work, we deem it interesting to1490

evaluate the extent to which the approach can be applied,1491

or needs to be adapted, in order to work in different context1492

w.r.t. the one used to evaluate the viability of the approach 1493

in this research (see also Section 5). 1494

As hinted to in Section 3, the duration of a compo- 1495

nent life cycle and the interactions performed with other 1496

components may represent a potential threat to reliability. 1497

A high number of interactions exposes the component to 1498

the error propagation phenomenon. A component that lives 1499

extensively, has more chance to enter into an erroneous state. 1500

Conversely, a component that lives for a restricted period 1501

of time has more chance to remain correct. Additionally, 1502

if the component enters an erroneous state, is likely to be 1503

destroyed before the error propagates. The timeline abstrac- 1504

tion proposed captures explicitly both the life cycle and the 1505

number of interactions of every single component during 1506

the execution. A relevant application of OREO then, may be 1507

represented by an offline runtime monitoring strategy aimed 1508

to detect possible weak configurations in this regard and 1509

consequently suggest modifications to the business logic in 1510

order to minimize the menace [21]. 1511

Besides, another challenge that a developer may incur 1512

during the design of the business logic is to predict the 1513

memory occupation. In this sense, the timeline abstraction 1514

can provide valuable support to monitor the behavior of 1515

the memory, exhibiting both average and peaks of memory 1516

usage, and its recurrent patterns. 1517

Last but not least, the theoretical framework OREO 1518

relies upon (see Section 4) enables, from a conceptual stand- 1519

point, also to implement online runtime monitoring strate- 1520

gies. Specifically, the timeline may be analyzed while the 1521

application under observation executes. As a first step, the 1522

functionalities implemented in the profiler module may be 1523

exploited in an online fashion. Features 1 and 2 of the 1524

profiler for instance (see Section 4), if used at runtime would 1525

enable proactive strategies like fault detection, isolation, and 1526

recovery (FDIR) of business logic components. 1527

Further online runtime monitoring strategies may be 1528

implemented from scratch. For instance, since components 1529

live in memory, there may be cases where the number of 1530

living components is high and in turn, there is excessive 1531

memory consumption. The timeline abstraction promotes 1532

awareness of the number of living components and addition- 1533

ally allows the implementation of strategies of passivation 1534

(i.e., saving the component to temporary storage outside the 1535

memory). In principle, the passivation policies can rely on 1536

the structural characteristics of currently living components 1537

e.g., passivating the component with the biggest memory 1538

footprint. However, the nature of the timeline also enables 1539

passivation policies based on historic data e.g., passivate the 1540

least recently used component. 1541

8. Related Work 1542

To compare the contribution of this work with other 1543

proposed methodologies, we identified a set of studies and 1544

tools that most closely align with our objectives. 1545

Overall, differently from previous approaches, the pro- 1546

posed open-source OREO tool presents, for the first time, 1547

Scommegna et al.: Preprint accepted to the Journal of Systems and Software Page 19 of 23



Subject Automatic Negligible Error propagation Behavioral Parallel Main DifferencesConfiguration Extraction Overhead Aware Explanation Session Support

Logging Tools ✗ ✗ ✗ ✓ ✗ Direct instrumentation of
the code, traces with inter-
leaved events and no FEF
analysis

Du et al. [33] ✗ ✗ ✓ ✗ ✓ No trace extraction frame-
work provided.

Jia et al. [34] ✗ ✗ ✓ ✓ ✓ Top-level services observed
rather than individual com-
ponents and methods.

Mertz et al. [35] ✗ ✓ ✗ ✓ ✗ Efficient but selective and
incomplete trace extraction.

Mertz et al. [15] ✗ ✓ ✗ ✓ ✗ Adaptive sampling rate. It
does not guarantee the ob-
servation of all events of
interest.

Kong et al. [1] ✗ ✓ ✗ ✓ ✗ Trace extraction configura-
tion can be complex and
time-consuming. It does not
handle interleaved events.

OREO Tool (this paper) ✓ ✓ ✓ ✓ ✓ Complete monitoring setup
and FEF propoagation anal-
ysis

Table 4
Comparison between OREO and closest methods and tools.

a novel abstraction of business logic evolution behavior1548

(referred to as timeline), able to track the lifespan of com-1549

ponents and dependencies established among them, during1550

the running behavior of the software observed, to locate and1551

monitors FEF chains. In fact, due to the high number of1552

components and combinatorial user interaction possibilities1553

involved, this is a very challenging task not explored in1554

these terms in the previous works addressing this topic. To1555

the best of our knowledge, the proposed framework and1556

its concrete implementation are the first approaches that1557

propose a runtime verification technique in the business1558

logic layer.1559

Table 4 summarizes the key differences between the1560

characteristics of our work and the most related contribu-1561

tions in terms of functionality and goals. In the following1562

sections, we discuss the works identified in the table along1563

with other related work by grouping them into categories.1564

8.1. Logging Tools1565

One of the most widely used methods for extracting and1566

understanding runtime behavior information in software-1567

intensive systems is through logging tools (e.g., log4j, slf4j,1568

or AspectJ). However, as confirmed by He et al. [13], logging1569

tools, unlike OREO, usually entail costly instrumentation of1570

the code, which typically requires modifying the source code1571

of the target system and results in performance overhead1572

(see Table 4). Additionally, such tools inherently lack native1573

support for fault-error-failure propagation analysis of any1574

kind.1575

In the case of multiple parallel sessions on the system,1576

OREO extracts and analyzes the session traces indepen-1577

dently (Section 3). In contrast, standard logging tools extract1578

a single trace with interleaved events, resulting in complexity1579

in understanding and analyzing the system. Some works,1580

such as those by Du et al. [33] and Jia et al. [34] (see Table 4), 1581

address the problem of interleaved events; however, they 1582

rely on classical logging tools for trace extraction, incurring 1583

overhead and instrumentation costs. 1584

8.2. Trace Extraction Methodologies 1585

The works of Mertz et al. [35, 15] (see Table 4) propose 1586

methodologies for extracting execution traces that, similar to 1587

OREO, are lightweight and low-overhead. However, the con- 1588

figuration cost of these methodologies remains uncertain, 1589

and to achieve low overhead, they rely on selective event ex- 1590

traction. This reliance results in incomplete execution traces, 1591

rendering such methodologies unsuitable for studying fault- 1592

error-failure chains. 1593

Efficient online runtime verification for large-scale cyber- 1594

physical systems is presented in the work of Zheng et al. [36]. 1595

In order to improve the efficiency of the proposed method, a 1596

novel linear optimization model is exploited and integrated 1597

with a runtime load balancing policy. The approach aimed at 1598

guaranteeing bounded computational and memory resources 1599

while performing runtime monitoring of local properties. 1600

Differently, event transformation algorithms, able to derive 1601

essential events from the observed traces, are designed to 1602

monitor global properties, achieving efficient monitoring of 1603

global properties and formulating the complex distributed 1604

monitoring as a standard decision problem for testing the 1605

membership of a trace in a regular language [36]. The 1606

work of Zheng et al. proposes a time-triggered approach. 1607

The runtime verification algorithm is based on following 1608

time steps. This implies a delay in the problem detection. 1609

The OREO tool instead follows an event-triggered strategy, 1610

which allows the detection of malfunctions as soon as 1611

possible even maintaining a low overhead. 1612

Scommegna et al.: Preprint accepted to the Journal of Systems and Software Page 20 of 23



8.3. Runtime Monitoring Frameworks1613

The work of Kong et al. [1] (see Table 4), proposes,1614

like the present work, a comprehensive runtime monitoring1615

framework: capable of extracting execution traces and sub-1616

sequently analyzing them to study behaviors that could lead1617

to failures. However, the configuration cost of this method-1618

ology could be time-consuming and complex. Additionally,1619

although it is flexible, it does not seem capable of observing1620

the lifecycle of components and does not provide a profiler1621

for analyzing error propagation.1622

In the paper of Simmonds et al. [11], a runtime verifica-1623

tion framework for web services is presented. Specifically,1624

the approach focuses on the dependencies, referred to as1625

conversations in the paper, established at runtime between1626

web services. The authors provide an ad-hoc syntax to spec-1627

ify a subset of UML 2.0 sequence diagrams used to express1628

web service conversation properties. Sequence diagrams are1629

then automatically translated into monitor automata used to1630

verify at runtime if the system complies with the properties.1631

Although the framework provides countless possibilities for1632

defining new properties to monitor due to the sequence dia-1633

gram formalism, the configuration process may be expensive1634

and error-prone and needs to be defined for each specific ap-1635

plication. Additionally, both the overhead introduced by the1636

framework and its scalability are not investigated. In contrast1637

to such work, OREO provides a lightweight configuration1638

phase and implies a low and scalable overhead.1639

A distributed service-based software architecture to sup-1640

port runtime verification for edge-intensive systems is pre-1641

sented in paper [37]. Edge nodes (ENs) host runtime moni-1642

tors that receive events from end devices and other ENs, and1643

express system requirements. Property evaluation occurs on1644

the board of ENs, and utilizes Metric First-Order Temporal1645

Logic to formalize traces of events. As a concrete case1646

study, the authors considered a spatially-distributed parking1647

system in a smart city, on which a resource-constrained1648

edge computing environment was the testbed. In contrast1649

to this work, OREO does not require establishing an entire1650

software architecture but simply consists in a tool that can be1651

deployed alongside the application under analysis. The plug-1652

and-play nature of OREO provides improved applicability1653

and flexibility.1654

The development of an efficient model-checking proce-1655

dure for Internet of Things (IoT) systems, during runtime1656

verification, is the focus of the paper by Lee et al. [9]. In1657

particular, a cache mechanism to reduce the computational1658

time spent for abstraction and verification is integrated into1659

the procedure developed. The paper focused on model check-1660

ing based on finite-state machine abstraction and model1661

transition as equations, with the aim of verifying the runtime1662

state of IoT applications. In contrast, the framework we pro-1663

pose does not rely on model-checking procedures. OREO,1664

therefore, can overcome with ease the problems identified as1665

critical by the authors themselves: like lack of expressivity in1666

properties definition, and fragility to changes of the system1667

under analysis.1668

IoT systems are also the main target of the paper of Incki 1669

et al. [38], where a novel runtime verification approach for 1670

IoT systems is proposed. A domain-specific event calculus 1671

(EC) for Constrained Application Protocol (CoAP)-based 1672

IoT systems, and an EC-to-EPL statement mapping are 1673

developed, to favor the exploitation of Esper complex event 1674

processing engine. The validity of the framework presented 1675

is then illustrated by taking into account use case applica- 1676

tions and analysis. However, the performance impact of the 1677

proposed runtime verification architecture is not considered 1678

in this specific work. 1679

8.4. Trace Analysis 1680

In the work of Bonnah et al. [39], efficient algorithms 1681

for offline runtime monitoring are presented. In particular, 1682

the work aims to exploit the compactness and expressivity 1683

of the time window temporal logic (TWTL) [40] in runtime 1684

verification tasks. The approach proposed by Bonnah et 1685

al. [39] identifies, as a foundation, basic rewriting rules 1686

which are used to iteratively replace subordinate terms of 1687

the TWTL formula until they are reduced to truth values. To 1688

illustrate the validity and the applicability of the algorithms 1689

developed, authors formalized the quality of service (QoS) 1690

constraints imposed by unmanned aerial vehicles (UAVs) in 1691

time-critical surveillance missions as TWTL specifications. 1692

Then, QoS constraint satisfaction is monitored by means 1693

of the algorithms proposed. Although using languages like 1694

TWTL to express time-bounded properties of the business 1695

logic may be effective, the work of Bonnah et al. proposes 1696

and evaluates only the algorithms to solve the defined prop- 1697

erties. Conversely in our work, we provide and evaluate an 1698

entire framework giving a concrete implementation oriented 1699

to runtime verification. 1700

An approach to monitoring the workflow temporal con- 1701

formance (i.e., workflow temporal verification), aiming at 1702

ensuring QoS satisfaction over workflow completion time, 1703

is presented in the work of Luo et al. [10]. Specifically, the 1704

authors develop an efficient and effective procedure to mon- 1705

itor the running behavior of parallel business workflows in 1706

the cloud, in order to promote on-time workflow completion. 1707

The runtime temporal conformance of workflows is mea- 1708

sured by evaluating the workflow throughput for describing 1709

the behavior of a large aggregation of parallel workflow 1710

instances, differently from existing approaches based on the 1711

response time of each activity composing the workflow, to 1712

reduce verification overhead. Then, verification checkpoints 1713

are introduced, i.e., instants where temporal verification 1714

needs to be performed to check the temporal conformance 1715

state, to reduce energy consumption. The approach pre- 1716

sented by Luo et al. aims to achieve better efficiency and 1717

effectiveness in parallel business workflow instances. In 1718

contrast, the framework we present in this work support 1719

reliability tasks. However, the extensibility of OREO allows 1720

the implementation of similar temporal conformance verifi- 1721

cation strategies in the business logic context. 1722

Scommegna et al.: Preprint accepted to the Journal of Systems and Software Page 21 of 23



In another related work focusing specifically on C and1723

C++, Havelund presents LogScope [41], a system for mon-1724

itoring event streams against formal specifications. Differ-1725

ently from such work, OREO is utilized to extract the ex-1726

ecution traces, rather than requiring them as input. In this1727

way, in contrast to LogScope, OREO provides a complete1728

monitoring setup, from the extraction of events to their1729

analysis of their properties. Additionally, OREO focuses on1730

Fault-Error-Failure chain analysis which, while it could be1731

implemented also via LogScope, is not considered as one of1732

LogScope’s current application scenarios.1733

8.5. Runtime Behavior Visualization1734

Havelund et al. [42] design and implement the DejaVu1735

tool for monitoring first-order past linear-time temporal logic1736

over a sequence of events. In the paper presented by Ma1737

et al. [43] a novel fault localization method that comprises1738

a first phase of fault-related statement localization, and a1739

second step consisting of fault comprehension is designed.1740

The method developed analyzes the dependence probability1741

of each statement to find the fault-related statements and1742

their propagation to discover the true fault.1743

In the work of Smyth et al. [44], an approach to bridge1744

the gap between domain-specific notation and modeling/pro-1745

gramming languages is presented. In opposition to such1746

work, we focus on the dual aspect Smyth et al. focus on,1747

namely the documentation and analysis of execution traces,1748

rather than making documentation executable. In a different1749

work by Dams et al. instead [45], dynamic documentation1750

using runtime verification via monitoring and visualization1751

techniques are discussed. OREO builds upon the future work1752

of Dams et al. [45] by showcasing how a formalization based1753

on the dynamic behavior of a software-intensive system can1754

be used to support its development and maintenance. In1755

another related work by Gorostiaga et al. [46], a runtime1756

verification solution based on stream runtime verification is1757

presented. Instead of focusing on general Fault-Error-Failure1758

chain analysis as done in OREO, the work of Gorostiaga et1759

al.consider a specific application domain and type of failure,1760

namely robotics and silent mission failures. Apart from the1761

context and failure type, OREO also differs from the work1762

of Gorostiaga et al. in terms of end goal, as the approach1763

of Gorostiaga et al. is used for prediction and correction of1764

robot behaviour, while OREO focuses on the development1765

and maintenance of software-intensive systems.1766

9. Conclusion1767

This paper focused on the software runtime monitoring,1768

contextualized to the fault localization and error propagation1769

problem. The open-source software tool developed proposes1770

a representation of the running status of the software mon-1771

itored, catching the interactions and dependencies estab-1772

lished among components during their life cycle, consider-1773

ing possible UI interactions. Such an execution component1774

abstraction is exploited to perform runtime fault localization.1775

Performance evaluation illustrates the remarkable ability of1776

the software released in catching and extracting the execu-1777

tion behavior of different software architectures, exhibiting1778

scalability, and confirming its suitability in addressing fault 1779

localization problems. Finally, an in-depth discussion about 1780

OREO practical complexity, and its possible application to 1781

a rich variety of different scenarios are provided. In future 1782

work, we plan to apply OREO in an industrial case study 1783

on a real system. This will involve engaging developers to 1784

use OREO as a tool for understanding the runtime behavior 1785

of the system, as well as a tool to support the replication of 1786

failure and identification of real heisenbugs. 1787

References 1788

[1] S. Kong, M. Lu, L. Li, L. Gao, Runtime monitoring of software 1789

execution trace: Method and tools, IEEE Access 8 (2020) 114020– 1790

114036. doi:10.1109/ACCESS.2020.3003087. 1791

[2] H. Lu, A. Forin, The design and implementation of p2v, an architec- 1792

ture for zero-overhead online verification of software programs (09 1793

2007). 1794

[3] O. Baldellon, J.-C. Fabre, M. Roy, Minotor: Monitoring timing and 1795

behavioral properties for dependable distributed systems, in: 2013 1796

IEEE 19th Pacific Rim International Symposium on Dependable 1797

Computing, 2013, pp. 206–215. doi:10.1109/PRDC.2013.41. 1798

[4] N. Mahadevan, A. Dubey, G. Karsai, Application of software 1799

health management techniques, in: Proceedings of the 6th Interna- 1800

tional Symposium on Software Engineering for Adaptive and Self- 1801

Managing Systems, SEAMS ’11, Association for Computing Machin- 1802

ery, New York, NY, USA, 2011, p. 1–10. 1803

[5] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, I. Neamtiu, 1804

Finding and reproducing heisenbugs in concurrent programs., in: 1805

OSDI, Vol. 8, 2008. 1806

[6] L. Scommegna, R. Verdecchia, E. Vicario, Unveiling faulty user 1807

sequences: A model-based approach to test three-tier software archi- 1808

tectures, Journal of Systems and Software 212 (2024) 112015. 1809

[7] T. Dohi, K. S. Trivedi, A. Avritzer, Handbook of software aging 1810

and rejuvenation: fundamentals, methods, applications, and future 1811

directions, World scientific, 2020. 1812

[8] M. Vierhauser, R. Rabiser, P. Grünbacher, K. Seyerlehner, S. Wallner, 1813

H. Zeisel, Reminds : A flexible runtime monitoring framework for 1814

systems of systems, Journal of Systems and Software 112 (2016) 1815

123–136. doi:https://doi.org/10.1016/j.jss.2015.07.008. 1816

URL https://www.sciencedirect.com/science/article/pii/ 1817

S0164121215001478 1818

[9] E. Lee, Y.-D. Seo, Y.-G. Kim, A cache-based model abstraction 1819

and runtime verification for the internet-of-things applications, IEEE 1820

Internet of Things Journal 7 (9) (2020) 8886–8901. doi:10.1109/JIOT. 1821

2020.2996663. 1822

[10] H. Luo, X. Liu, J. Liu, Y. Yang, J. Grundy, Runtime verification of 1823

business cloud workflow temporal conformance, IEEE Transactions 1824

on Services Computing 15 (2) (2022) 833–846. doi:10.1109/TSC. 1825

2019.2962666. 1826

[11] J. Simmonds, Y. Gan, M. Chechik, S. Nejati, B. O’Farrell, E. Litani, 1827

J. Waterhouse, Runtime monitoring of web service conversations, 1828

IEEE Transactions on Services Computing 2 (3) (2009) 223–244. 1829

doi:10.1109/TSC.2009.16. 1830

[12] E. Bartocci, Y. Falcone, A. Francalanza, G. Reger, Introduction to 1831

runtime verification, in: Lectures on Runtime Verification, Springer, 1832

2018, pp. 1–33. 1833

[13] S. He, P. He, Z. Chen, T. Yang, Y. Su, M. R. Lyu, A survey on 1834

automated log analysis for reliability engineering, ACM computing 1835

surveys (CSUR) 54 (6) (2021) 1–37. 1836

[14] P. Las-Casas, G. Papakerashvili, V. Anand, J. Mace, Sifter: Scalable 1837

sampling for distributed traces, without feature engineering, in: Pro- 1838

ceedings of the ACM Symposium on Cloud Computing, 2019, pp. 1839

312–324. 1840

[15] J. Mertz, I. Nunes, Software runtime monitoring with adaptive sam- 1841

pling rate to collect representative samples of execution traces, Jour- 1842

nal of Systems and Software 202 (2023) 111708. 1843

Scommegna et al.: Preprint accepted to the Journal of Systems and Software Page 22 of 23

https://doi.org/10.1109/ACCESS.2020.3003087
https://doi.org/10.1109/PRDC.2013.41
https://www.sciencedirect.com/science/article/pii/S0164121215001478
https://www.sciencedirect.com/science/article/pii/S0164121215001478
https://www.sciencedirect.com/science/article/pii/S0164121215001478
https://doi.org/https://doi.org/10.1016/j.jss.2015.07.008
https://www.sciencedirect.com/science/article/pii/S0164121215001478
https://www.sciencedirect.com/science/article/pii/S0164121215001478
https://www.sciencedirect.com/science/article/pii/S0164121215001478
https://doi.org/10.1109/JIOT.2020.2996663
https://doi.org/10.1109/JIOT.2020.2996663
https://doi.org/10.1109/JIOT.2020.2996663
https://doi.org/10.1109/TSC.2019.2962666
https://doi.org/10.1109/TSC.2019.2962666
https://doi.org/10.1109/TSC.2019.2962666
https://doi.org/10.1109/TSC.2009.16


[16] M. Grottke, K. S. Trivedi, Fighting bugs: Remove, retry, replicate, and1844

rejuvenate, Computer 40 (2) (2007) 107–109.1845

[17] J. Mertz, I. Nunes, Automation of application-level caching in a1846

seamless way, Software: Practice and Experience 48 (6) (2018) 1218–1847

1237.1848

[18] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr, Basic concepts1849

and taxonomy of dependable and secure computing, IEEE transac-1850

tions on dependable and secure computing 1 (1) (2004) 11–33.1851

[19] M. Fowler, Patterns of Enterprise Application Architecture: Pattern1852

Enterpr Applica Arch, Addison-Wesley, 2012.1853

[20] R. C. Martin, Design principles and design patterns, Object Mentor1854

1 (34) (2000) 597.1855

[21] J. Parri, S. Sampietro, L. Scommegna, E. Vicario, Evaluation of1856

software aging in component-based web applications subject to soft1857

errors over time, in: 2021 IEEE International Symposium on Software1858

Reliability Engineering Workshops (ISSREW), IEEE, 2021, pp. 25–1859

32.1860

[22] R. Alur, K. Etessami, P. Madhusudan, A temporal logic of nested calls1861

and returns, in: International Conference on Tools and Algorithms for1862

the Construction and Analysis of Systems, Springer, 2004, pp. 467–1863

481.1864

[23] A. Goldberg, K. Havelund, Automated runtime verification with1865

eagle., in: MSVVEIS, IEEE, 2005.1866

[24] B. Bollig, N. Decker, M. Leucker, Frequency linear-time temporal1867

logic, in: 2012 Sixth International Symposium on Theoretical Aspects1868

of Software Engineering, IEEE, 2012, pp. 85–92.1869

[25] P. O. Meredith, D. Jin, D. Griffith, F. Chen, G. Roşu, An overview1870

of the mop runtime verification framework, International Journal on1871

Software Tools for Technology Transfer 14 (3) (2012) 249–289.1872

[26] M. Müller, Practical JSF in Java EE 8, Springer, 2018.1873

[27] F. Patara, E. Vicario, An adaptable patient-centric electronic health1874

record system for personalized home care, in: 2014 8th International1875

Symposium on Medical Information and Communication Technology1876

(ISMICT), IEEE, 2014, pp. 1–5.1877

[28] S. Fioravanti, S. Mattolini, F. Patara, E. Vicario, Experimental per-1878

formance evaluation of different data models for a reflection software1879

architecture over nosql persistence layers, in: Proceedings of the 7th1880

ACM/SPEC on International Conference on Performance Engineer-1881

ing, 2016, pp. 297–308.1882

[29] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wess-1883

lén, Experimentation in software engineering, Springer Science &1884

Business Media, 2012.1885

[30] P. Runeson, M. Höst, Guidelines for conducting and reporting case1886

study research in software engineering, Empirical software engineer-1887

ing 14 (2009) 131–164.1888

[31] R. Verdecchia, E. Engström, P. Lago, P. Runeson, Q. Song, Threats1889

to validity in software engineering research: A critical reflection,1890

Information and Software Technology 164 (2023) 107329.1891

[32] G. J. Myers, T. Badgett, T. M. Thomas, C. Sandler, The art of software1892

testing, Vol. 2, Wiley Online Library, 2004.1893

[33] M. Du, F. Li, G. Zheng, V. Srikumar, Deeplog: Anomaly detection and1894

diagnosis from system logs through deep learning, in: Proceedings of1895

the 2017 ACM SIGSAC conference on computer and communica-1896

tions security, 2017, pp. 1285–1298.1897

[34] T. Jia, P. Chen, L. Yang, Y. Li, F. Meng, J. Xu, An approach1898

for anomaly diagnosis based on hybrid graph model with logs for1899

distributed services, in: 2017 IEEE international conference on web1900

services (ICWS), IEEE, 2017, pp. 25–32.1901

[35] J. Mertz, I. Nunes, Tigris: A dsl and framework for monitoring1902

software systems at runtime, Journal of Systems and Software 1771903

(2021) 110963.1904

[36] X. Zheng, C. Julien, R. Podorozhny, F. Cassez, T. Rakotoarivelo,1905

Efficient and scalable runtime monitoring for cyber–physical system,1906

IEEE Systems Journal 12 (2) (2018) 1667–1678. doi:10.1109/JSYST.1907

2016.2614599.1908

[37] C. Tsigkanos, M. M. Bersani, P. A. Frangoudis, S. Dustdar, Edge-1909

based runtime verification for the internet of things, IEEE Transac-1910

tions on Services Computing 15 (5) (2022) 2713–2727. doi:10.1109/1911

TSC.2021.3074956. 1912

[38] K. Incki, I. Ari, A novel runtime verification solution for iot systems, 1913

IEEE Access 6 (2018) 13501–13512. doi:10.1109/ACCESS.2018. 1914

2813887. 1915

[39] E. Bonnah, K. A. Hoque, Runtime monitoring of time window tempo- 1916

ral logic, IEEE Robotics and Automation Letters 7 (3) (2022) 5888– 1917

5895. doi:10.1109/LRA.2022.3160592. 1918

[40] C.-I. Vasile, D. Aksaray, C. Belta, Time window temporal logic, 1919

Theoretical Computer Science 691 (2017) 27–54. 1920

[41] K. Havelund, Specification-based monitoring in c++, in: Interna- 1921

tional Symposium on Leveraging Applications of Formal Methods, 1922

Springer, 2022, pp. 65–87. 1923

[42] K. Havelund, D. Peled, D. Ulus, Dejavu: A monitoring tool for first- 1924

order temporal logic, 2018, pp. 12–13. doi:10.1109/MT-CPS.2018. 1925

00013. 1926

[43] P. Ma, Y. Wang, X. Su, T. Wang, A novel fault localization method 1927

with fault propagation context analysis, in: 2013 Third International 1928

Conference on Instrumentation, Measurement, Computer, Communi- 1929

cation and Control, 2013, pp. 1194–1199. doi:10.1109/IMCCC.2013. 1930

265. 1931

[44] S. Smyth, J. Petzold, J. Schürmann, F. Karbus, T. Margaria, R. von 1932

Hanxleden, B. Steffen, Executable documentation: test-first in action, 1933

in: International Symposium on Leveraging Applications of Formal 1934

Methods, Springer, 2022, pp. 135–156. 1935

[45] D. Dams, K. Havelund, S. Kauffman, Runtime verification as docu- 1936

mentation, in: International Symposium on Leveraging Applications 1937

of Formal Methods, Springer, 2022, pp. 157–173. 1938

[46] F. Gorostiaga, S. Zudaire, C. Sánchez, G. Schneider, S. Uchitel, As- 1939

sumption monitoring of temporal task planning using stream runtime 1940

verification, in: International Symposium on Leveraging Applications 1941

of Formal Methods, Springer, 2022, pp. 397–414. 1942

Scommegna et al.: Preprint accepted to the Journal of Systems and Software Page 23 of 23

https://doi.org/10.1109/JSYST.2016.2614599
https://doi.org/10.1109/JSYST.2016.2614599
https://doi.org/10.1109/JSYST.2016.2614599
https://doi.org/10.1109/TSC.2021.3074956
https://doi.org/10.1109/TSC.2021.3074956
https://doi.org/10.1109/TSC.2021.3074956
https://doi.org/10.1109/ACCESS.2018.2813887
https://doi.org/10.1109/ACCESS.2018.2813887
https://doi.org/10.1109/ACCESS.2018.2813887
https://doi.org/10.1109/LRA.2022.3160592
https://doi.org/10.1109/MT-CPS.2018.00013
https://doi.org/10.1109/MT-CPS.2018.00013
https://doi.org/10.1109/MT-CPS.2018.00013
https://doi.org/10.1109/IMCCC.2013.265
https://doi.org/10.1109/IMCCC.2013.265
https://doi.org/10.1109/IMCCC.2013.265

