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Abstract. Resource scaling is widely employed in cloud computing
to adapt system operation to internal (i.e., application) and external
(i.e., environment) changes. We present a quantitative approach for coor-
dinated vertical scaling of resources in cloud computing workflows, aimed
at satisfying an agreed Service Level Objective (SLO) by improving the
workflow end-to-end (e2e) response time distribution. Workflows con-
sist of IaaS services running on dedicated clusters, statically reserved
before execution. Services are composed through sequence, choice/merge,
and balanced split/join blocks, and have generally distributed (i.e., non-
Markovian) durations possibly over bounded supports, facilitating fitting
of analytical distributions from observed data. Resource allocation is per-
formed through an efficient heuristics guided by the mean makespans of
sub-workflows. The heuristics performs a top-down visit of the hierarchy
of services, and it exploits an efficient compositional method to derive the
response time distribution and the mean makespan of each sub-workflow.
Experimental results on a workflow with high concurrency degree appear
promising for feasibility and effectiveness of the approach.

Keywords: Cloud computing · coordinated scaling · stochastic
workflow · end-to-end response time distribution · complex workflow
structure

1 Introduction

Cloud Computing (CC) systems [7,16] need to store, manage, and process enor-
mous amounts of data continuously generated by a variety of sources within
the Internet of Things (IoT) [28]. Excessive network traffic or heavy computa-
tional workload may lead to violations of Quality of Service (QoS) attributes
granted through Service level Agreements (SLAs) [29]. Therefore, CC systems
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must autonomously adapt their operation in response to time-varying changes
both in the software system itself and in its operating environment [26,32]. Adap-
tation can be achieved through autoscaling systems [13], which dynamically
change software configurations and provision hardware resources on demand,
with the goal of continuously satisfying cost objectives as well as non-functional
Service Level Objectives (SLOs), i.e., specific measures agreed within an SLA.
Scaling actions can be horizontal, if the system adds or removes containers or
Virtual Machines (VMs) where services can be deployed, or vertical, if the system
changes specifications of those containers or VMs, e.g., CPU cores or available
memory.

Horizontal scaling can optimize resource provisioning for individual ser-
vices orchestrated in larger applications [1,3,14,20,37], e.g., composite web ser-
vices [8], Functions as a Service (FaaS) platforms [23,33], microservice archi-
tectures [2]. In [20], bottlenecks in a multi-tier application are automatically
detected and resolved, minimizing the number of web servers and database
instances while guaranteeing a maximum response time. Dynamic scaling of the
number of VMs in cloud services is performed based on the number of active
sessions of each web server instance [14], using queueing theory to estimate
demand [1], and leveraging also time series analysis to forecast load intensity [3].
Few approaches exploit coordinated scaling of resources to avoid undesired effects
of local scaling like bottleneck shifting and oscillations [37], e.g., by reconfigur-
ing services of small web applications together [35], by exploiting time-series
analysis and queueing theory to determine the number of VM instances that
minimizes energy consumption without violating SLAs [4], or by collectively
providing application tiers with a number of servers or VMs that guarantees
meeting contracted [37] or average response times [6]. Though horizontal scaling
has received more attention [13] and has better support from cloud vendors [15],
being easier to implement and manage, it performs coarse-grained adaptation
through static replication of VMs or containers with fixed-size configurations,
and it suffers from non-negligible lags to instance and start VMs or contain-
ers [39], which, despite lag-mitigating actions like dynamic VM cloning [24],
may negatively affect time-critical applications.

Vertical scaling performs fine-grained resource adaptation by modify-
ing attributes of VMs or containers [15,21,34], thus limiting resource over-
provisioning and resulting preferable for applications with time-critical require-
ments. In [34], CPU voltage and frequency of VMs in multi-tenant cloud sys-
tems are individually adapted to meet SLOs, supporting migration to new VMs
in case of overloading. Optimization of CPU usage and memory allocated to a
cloud application is performed in [15] to meet requirements on mean response
time, exploiting a performance model based on an inverse relationship between
the application mean response time and the number of allocated CPU cores [21].
In [39], CPU power tuning and hotplugging are performed to improve CPU usage
efficiency in a web server, with minimum SLA violation rate. Few approaches per-
form vertical scaling in a coordinated manner. In [22], soft resources of web appli-
cation servers (e.g., number of server threads and database connections) are allo-
cated based on measured throughput and concurrency. A resource-management
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framework is defined in [25] to manage shared resources among microservices,
exploiting machine learning methods both to localize microservice instances
responsible for SLO violations and to define methods to mitigate resource con-
tention. Horizontal and vertical scaling are combined in [19] to determine a load
distribution policy for co-located distributed applications by exploiting multi-
class queueing networks and model predictive control, and in [17] to adapt the
number of replicas and the CPU capacity of each microservice by using lay-
ered queueing networks to assess potential performance improvement of scaling
actions.

The few approaches that address coordinated resource scaling [26] mainly
consider simple cloud applications consisting of few services orchestrated as
sequential workflows. Notably, no approach takes into account the end-to-end
(e2e) response time distribution in scaling decisions, which instead becomes rel-
evant when SLAs are characterized by soft deadlines and penalty functions [27]
defined as rewards calculated from such distribution.

In this paper, we present an efficient approach to perform coordinated vertical
scaling of resources in complex stochastic workflows, aimed at satisfying a SLO
by improving the workflow e2e response time distribution. Specifically, workflows
compose IaaS services running on dedicated clusters whose size must be deter-
mined in advance, reserving and statically assigning resources to services before
execution. Services are composed through sequence, fork-join, and choice-merge
patterns [30], and have generally distributed (GEN) response times possibly with
bounded supports, facilitating representation of real-time constraints and fitting
of analytical distributions from observed data. Each service is characterized by
a job size [5], representing its makespan (i.e. its expected response time) with a
given amount of assigned resources; we assume the makespan to be inversely pro-
portional to the amount of assigned resources [15,21,31]. The defined heuristics
uses a structured workflow model [10] to perform a top-down visit of the hierar-
chy of services, assigning resources so as to minimize the makespan of the work-
flow e2e response time and to satisfy the agreed SLO. To this end, the heuristics
exploits an efficient compositional analysis method [11] to derive the response
time distribution of each sub-workflow and to compute its makespan. Feasibility
and effectiveness of the approach are assessed on a non-trivial synthetic workflow
stressing computational complexity. Results show that the heuristics is effective
at improving the e2e response time distribution of the entire workflow, and very
efficient, enabling its application at runtime in reaction to QoS changes.

In the framework of [9], our approach is defined by the following attributes:
the goal of resource adaptation is to ensure that workflow execution fulfils non-
functional requirements specified by percentiles of quality attributes, i.e., that
the makespan of the workflow response time satisfies the agreed SLO; the stage
of system lifetime at which resource adaptation is performed is the runtime
stage with proactive mode (i.e., anticipating resource adaptation), though the
approach can be applied also in reactive mode (i.e., after changes in quality
attributes) as shown by the experimental results; the composition level at which
resource adaptation is performed involves both services (i.e., abstract compo-
sition made of tasks orchestrated by some composition logic) and workflow
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(i.e., concrete composition where tasks of an abstract composition are mapped
to implementations); the scope of resource adaptation, in terms of number of
systems and granularity of adaptation, considers a single system and a single
request; adaptation actions mainly consist of service tuning operations chang-
ing behavior of concrete services (e.g., reducing the makespan by increasing the
amount of resources), though adaptation is performed in a coordinated manner;
and, resource adaptation is performed by a single authority.

The rest of the paper is organized as follows. Section 2 recalls the hierarchical
formalism for workflow modeling and the compositional method for evaluation
of the workflow e2e response time distribution. Section 3 illustrates the proposed
resource assignment method. Section 4 presents the experimental results achieved
on a complex workflow. Finally, Sect. 5 draws conclusions and outlines possible
extensions and improvements of the proposed approach.

2 Background: Workflow Modeling and Evaluation

We model workflows as recursive compositions of blocks specified by Stochastic
Time Petri Nets (STPNs) [38]. Each STPN block has a single starting place,
which receives a token when workflow execution starts, and a single final place,
which receives a token when workflow execution eventually ends with probabil-
ity 1 (w.p.1). As shown in Fig. 1, blocks model sequential, balanced split/join,
and choice/merge workflow patterns [30,40], with the following EBNF syntax:

Block := ACT | SEQ{Block1, . . . ,Blockn} (1)
| AND{Block1, . . . ,Blockn} | XOR{Block1, . . . ,Blockn, p1, . . . , pn}

where ACT is an elementary activity with non-Markovian distribution possibly
with bounded support (e.g., block A in Fig. 1b), SEQ{Block1, . . . , Blockn}
models n sequential blocks Block1, . . . ,Blockn (e.g., block S1 in Fig. 1b),
AND{Block1,. . . , Blockn} models n concurrent blocks Block1, . . . , Blockn

(e.g., block A1 in Fig. 1b), and XOR{Block1, . . . , Blockn, p1, . . . , pn} models
n alternative blocks Block1, . . . ,Blockn with probability p1, . . . , pn, respec-
tively (e.g., block X1 in Fig. 1b). Note that associating activity durations with
non-Markovian distributions possibly with bounded supports facilitates fitting
of analytical distributions from data collected from real web applications and
enables representation of firm constraints on execution times of activities.

This workflow model can be represented as a structure tree [10] S = 〈N,n0〉,
where N is the set of nodes (i.e., blocks) and n0 ∈ N is the root node (i.e., the
entire workflow). In turn, each node ni ∈ N is a tuple 〈Ci, typei〉, where Ci is
the set of the children nodes of ni and typei ∈ {ACT,SEQ,AND,XOR} is the
type of the block modeled by node ni, e.g., in Fig. 1a, node A1 models an AND
block composing nodes I and J.

For complex workflows made of several concurrent activities with duration
characterized by GEN Cumulative Distribution Functions (CDFs) possibly with
bounded supports, the e2e response time distribution cannot be evaluated by
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Fig. 1. (a) Structure tree and (b) STPN modeling a synthetic workflow.
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transient analysis [18] of the workflow STPN. To address the issue, a composi-
tional approach is defined in [11], which first performs a top-down visit of the
structure tree to estimate the analysis complexity of blocks, then evaluates the
response time distribution of the identified sub-workflows in isolation, and finally
performs a bottom-up recomposition of the obtained results. In particular, for
workflows defined by well-nested composite blocks as in this paper (i.e., composi-
tion of AND, SEQ, and XOR blocks), the exact e2e response time distribution
can be evaluated by recursive numerical analysis [11].

3 Coordinated Resource Scaling Heuristics

In this section, we present a vertical scaling heuristics for coordinated allocation
of resources to each workflow activity, improving the workflow e2e response time
distribution. We illustrate how the workflow structure tree is visited (Sect. 3.1)
and the scaling decisions for each node type (Sect. 3.2).

3.1 Heuristics Overview

The response time of each activity is a random variable depending on the
amount R of allocated resources. The job size X of each activity is the invariant
amount of work to be completed with the assigned amount R of resources, and
it is evaluated as a scalar value depending on R and on a mean makespan TR,
i.e., the mean response time. Similarly to [15,21,31], we consider X := R TR ∀R.
For each node of the structure tree of a workflow, given a new resource alloca-
tion, the makespan can be estimated as a function of the invariant job sizes of
the children of the node. This function depends on the node type.

The heuristics performs a top-down visit of the structure tree and splits the
resources assigned to each node among its children by solving an optimization
problem, until the resource allocation of all elementary activities is determined.
Note that, as long as the job sizes of the tasks are known, the method can
identify an ideal resource allocation not only when the total amount of resources
is redistributed, but also when it is incremented or decremented. Hence, different
scalar SLOs can be fit by varying the amount of resources in input.

Let S = 〈N,n0〉 be a structure tree as defined in Sect. 2. We extend the
definition of node ni ∈ N with the tuple 〈Ci, typei, Ri, Ti,Xi〉, where Ri ∈ R>0

is the amount of resources initially assigned to ni, Ti ∈ R≥0 is the makespan
of ni, and Xi is the job size of ni. For each non-leaf node ni ∈ N , the number
of resources of ni is the sum of the number of resources allocated to its children
nodes, i.e., ∀ni ∈ N such that Ci �= ∅, Ri =

∑
nj∈Ci

Rj . To coordinately adapt
the resource provisioning of the activities of a workflow, the approach performs
a top-down visit of the workflow structure tree.

– Initially, an arbitrary amount of resources Rin
0 is assigned to the root node n0.

– For each non-leaf node nk, the amount of input resources Rin
k is split by

assigning an amount R�
j to each child node nj , i.e.,

∑
nj∈Ck

R�
j = Rin

k ; the
assignment depends on the node type.
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By induction, the sum of the amounts of resources allocated to the leaf nodes is
equal to the amount of resources of the root node, i.e.,

∑
nk|Ck=∅ R�

k = Rin
0 .

3.2 Scaling Decisions

We characterize the different resource scaling decisions based on the node types.
Sequential Activities. Let nk be an activity with typek = SEQ and children
Ck = {i, j}, and let Rin

k be the amount of resources to be split. The makespan
of node nk can be obtained as

Tk = Ti + Tj =
Xi

Ri
+

Xj

Rin
k − Ri

(2)

which has a minimum when the following resources are allocated to node ni:

R�
i =

√
Xi√

Xi +
√

Xj

Rin
k . (3)

The result is obtained by imposing dTk

dRi
= 0, and it can be extended by

induction to the ordered sequence SEQ(n1, . . . , nJ ) of J > 2 activities:

R�
i =

√
Xi

∑J
j=1

√
Xj

Rin
k ∀ i ∈ {1, . . . , J}. (4)

Each node allocation is thus obtained considering the allocation evaluated for
previous nodes, that is removed from the input resources Rin

k . Note that, since
we reserve resources before service execution, the optimum does not exploit
resources used by activities that have already been executed.
Concurrent Activities. Let nk be an activity with typek = AND, children
Ck = {i, j}, and amount Rin

k of resources to be split. In this case, the makespan
(mean response time) cannot be defined as an analytical function of Ri, pre-
cluding to evaluate the minimum by exploiting the Fermat theorem. Hence, we
provide a heuristics evaluation of R�

i depending on a parameter α ∈ R
+ modu-

lating the weight of the job size in determining the solution. In particular, R�
i is

evaluated by imposing equality between the ratio of response times of node nk

children, and the (α + 1)-th power of the resources provisioned to the children:

Xi

Rα+1
i

=
Xj

(Rin
k − Ri)α+1

(5)

This leads to the allocation:

R�
i =

α+1
√

Xi

α+1
√

Xi + α+1
√

Xj

Rin
k (6)

The solution is extended to J activities by induction:

R�
i =

α+1
√

Xi
∑J

j=1
α+1

√
Xj

Rin
k ∀ i ∈ {1, . . . , J} (7)
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Note that, when α = 0, the heuristics determines R�
i by imposing equality

between the response times of the considered node children.
Alternative Activities. Let nk be an activity with typek = XOR, children
Ck = {i, j} having probabilities pi and pj = 1−pi to occur, and Rin

k the amount
of resources to be split. The makespan of nk is

Tk = piTi + pjTj = pi
Xi

Ri
+ pj

Xj

Rin
k − Ri

(8)

which has the minimum

T �
k =

(√
piXi +

√
pjXj

)2

Rin
k

(9)

when the following resources are allocated to node i:

R�
i =

√
piXi√

piXi +
√

pjXj

Rin
k (10)

which is in turn obtained by exploiting the Fermat theorem. As the solution
shows, the optimal allocation of an XOR node is a generalization of the optimal
allocation for a SEQ node. Hence, the extension to the case with more than
2 activities can be derived from the solution obtained for the SEQ node. Also
note that the available resources Rin

k are split among the activities i and j: this
assumption is useful to model workflows in microservice and service-oriented
applications, where each service has a reserved amount of resources. In contrast,
for microservices deployed with FaaS cloud solutions, resources are allocated on-
demand for each service execution: in this case, cloud costs are accrued only for
the resources of the selected service; the expected cost is in this case piRi +pjRj

instead of Ri + Rj , resulting in a different optimal allocation.

Once resources are assigned to each simple node, the response time CDF of
each activity can be determined by leveraging linearity of the job size invariance,
e.g., if resources assigned to an activity with Erlang response time distribution
are doubled, then the rate of the Erlang distribution doubles.

4 Experimental Evaluation

In this section, we assess feasibility and effectiveness of the proposed heuristics.
First, we show how different values of parameter α produce different resource
allocations, with consequent different improvement of the workflow e2e response
time CDF (Sect. 4.1). The experiment is performed for two different initial
resource allocations. Then, we test the ability of the heuristics to meet an agreed
SLO while minimizing the amount of allocated resources (Sect. 4.2).

Both experiments are performed on the synthetic workflow of Fig. 1, which
consists of 20 elementary blocks combined through well-nested patterns, yield-
ing a model with up to 10 concurrent activities. For each elementary activity,
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Table 1. Resources allocated to the activities of the workflow of Fig. 1, before (column
rstart) and after heuristics execution with different values of α (columns rα with α ∈
{0, 1

4
, 1
2
, 1, 2, 4}): (a) balanced and (b) unbalanced initial allocation.

ACT rstart r0 r1/4 r1/2 r1 r2 r4

A 1.00 0.52 0.64 0.73 0.85 0.97 1.07

B 1.00 0.55 0.68 0.78 0.90 1.03 1.14

C 1.00 0.25 0.41 0.57 0.84 1.23 1.65

D 1.00 2.85 2.51 2.29 2.01 1.75 1.54

E 1.00 1.49 1.31 1.19 1.05 0.91 0.81

F 1.00 1.37 1.20 1.01 0.97 0.84 0.74

G 1.00 0.72 0.71 0.70 0.68 0.65 0.62

H 1.00 0.84 0.83 0.82 0.79 0.75 0.72

I 1.00 0.63 0.66 0.68 0.69 0.69 0.68

J 1.00 1.03 0.98 0.94 0.88 0.81 0.75

K 1.00 0.54 0.67 0.77 0.89 1.03 1.15

L 1.00 0.50 0.61 0.70 0.82 0.95 1.05

M 1.00 1.61 1.67 1.69 1.69 1.68 1.65

N 1.00 0.97 1.00 1.02 1.02 1.01 0.99

O 1.00 0.48 0.47 0.46 0.44 0.42 0.40

P 1.00 1.70 1.66 1.63 1.56 1.48 1.40

Q 1.00 1.19 1.16 1.14 1.09 1.04 0.98

R 1.00 1.49 1.52 1.52 1.52 1.49 1.45

S 1.00 0.71 0.71 0.70 0.68 0.66 0.63

T 1.00 0.53 0.56 0.57 0.59 0.59 0.59

(a) Balanced initial res. allocation.

ACT rstart r0 r1/4 r1/2 r1 r2 r4

A 0.375 0.21 0.32 0.43 0.60 0.80 0.99

B 0.375 0.22 0.34 0.45 0.63 0.85 1.05

C 0.375 0.01 0.21 0.33 0.59 1.01 1.52

D 0.375 1.13 1.27 1.34 1.41 1.44 1.42

E 0.375 0.59 0.66 0.70 0.74 0.75 0.74

F 0.375 0.54 0.61 0.65 0.68 0.69 0.68

G 3.75 2.49 2.22 2.02 1.76 1.48 1.26

H 0.375 0.92 0.82 0.75 0.65 0.55 0.46

I 3.75 3.14 2.63 2.28 1.83 1.40 1.08

J 0.375 0.51 0.62 0.68 0.74 0.77 0.75

K 0.375 0.21 0.34 0.45 0.63 0.85 1.05

L 0.375 0.20 0.31 0.41 0.58 0.78 0.97

M 0.375 0.64 0.84 0.99 1.19 1.38 1.51

N 0.375 0.39 0.51 0.60 0.72 0.83 0.91

O 3.75 2.05 1.93 1.83 1.67 1.47 1.29

P 0.375 2.29 2.16 2.04 1.86 1.64 1.44

Q 0.375 1.01 0.95 0.90 0.82 0.72 0.63

R 0.375 1.46 1.44 1.40 1.32 1.20 1.09

S 3.75 2.68 2.51 2.33 2.04 1.67 1.34

T 0.375 0.20 0.31 0.41 0.55 0.70 0.80

(b) Unbalanced initial res. allocation.

we assume that the response time CDF achieved with a given resource assign-
ment is known, either from measurements of previous implementations or by
contract. To easily manage the linear relation between response time and allo-
cated resources assumed by the performance model of Sect. 3.1, and to facilitate
the interpretation of the experimental results, without loss of generality, we con-
sider Erlang CDFs for the response times of elementary activities. In particular,
we consider Erlang CDFs with 5-phases and rates randomly selected in [0, 5], so
guaranteeing variability in expected response times of activities. We remark that
any numerical CDF could be considered as well, or any analytical CDF in the
class of expolynomial functions (also termed exponomials [36]) supported by the
compositional analysis technique of [11] exploited by the proposed heuristics.

All the experiments reported in this section have been performed on a Mac-
Book Pro 2021 equipped with an Apple M1 Pro octa-core processor with a rate
clock up to 3.2 GHz and 16 GB RAM. Experiments have been performed using
an extension of the Eulero Java library [12], currently under development.

4.1 Heuristics Sensitivity to Parameter α

We consider two arbitrary different initial allocations of resources to the activities
of the workflow of Fig. 1. In the first (column rstart of Table 1a), we consider a
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(a) Balanced initial resource allocation.

(b) Unbalanced initial resource allocation.

Fig. 2. CDF of the e2e response time of the workflow of Fig. 1, obtained through the
execution of the proposed heuristics with different values of parameter α, by assuming:
(a) the balanced initial resource allocation shown in Table 1a, and (b) the unbalanced
initial resource allocation shown in Table 1b.

balanced allocation where each activity is assigned 1 resource, for a total amount
of 20 resources (balanced initial resource allocation). In the second (shown in
column rstart of Table 1b), we consider an unbalanced allocation, where activities
G, I, O, and S have 10 times the resources of the other activities (unbalanced
initial resource allocation). To make results comparable, we maintain a total of
20 resources, thus allocating 15 resources to G, I, O, and S (i.e., 3.75 resources
each), and 5 resources to the remaining activities (i.e., 0.375 each). Tables 1a
and 1b also show the resource allocation computed by the proposed heuristics.

We evaluate how the resource allocation provided by the heuristics improves
the workflow e2e response time CDF for different values of α ∈ {0, 1

4 , 1
2 , 1, 2, 4}.

Results reported in Figs. 2a and 2b show an improvement for any considered
value of α and for any of the two initial allocations of resources, with better
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results achieved for α ∈ [0, 1] and nearly the best result obtained for α = 1
4 .

This result suggest that, being α = 1
n , the e2e response time CDF improves as n

increases, up to a certain value beyond which the CDF gets worse.
If the initial resource allocation is balanced, different values of α ∈ [0, 1]

produce nearly comparable e2e response time CDFs. This result suggests that,
in this case, balancing the makespan of the children of AND nodes determines a
good resource allocation, significantly improving the workflow e2e response time
CDF. Conversely, if the initial resource allocation is unbalanced, better results
are obtained for values of α ∈ (0, 1], with a worse result obtained for α = 0 with
respect to the case of balanced initial allocation of resources.

It is worth noting that, for both variants of the experiment, the proposed
heuristics runs in 0.2 s on average, proving to be efficient even for complex work-
flows, which is an essential requirement for modern microservice architectures
where hundreds of services are orchestrated as workflows of activities.

4.2 Heuristics Ability to Achieve SLO Guarantees

For the workflow of Fig. 1 with the initial balanced resource allocation of
Table 1a, we consider an SLO expressed in terms of e2e response time CDF. In
particular, the SLO is obtained as the e2e response time CDF of a randomly gen-
erated well-nested workflow, having expected response time equal to TSLO = 6.17
s. As shown in Fig. 3, with this allocation of resources, the workflow e2e response
time CDF (violet curve) does not meet the SLO (light blue curve). Rebalancing
the existing resources by applying the proposed heuristics with α = 1

4 (which is
the value yielding the best results in Sect. 4.1) produces an improvement of the
e2e response time CDF, which however still violates the required SLO. Therefore,
an additional amount of resources is needed not to violate the SLO.

To determine the new amount of resources, we consider two different strate-
gies whose results are reported in Fig. 3. We perform an experiment (reallo-
cate resources first) where we first compute a new resource allocation through
our heuristics with α = 1

4 (green curve in Fig. 3a), by assuming that the total
amount of allocated resources does not change, i.e., R0 = 20. Then, we eval-
uate the additional amount of resources that is needed to meet the specified
SLO, by exploiting the assumption of invariance of the job size of a workflow
(as discussed in Sect. 3.1). In fact, by knowing the expected response time TSLO

of the SLO, the initial amount of allocated resources R0 = 20, and the expected
response time T0 obtained after resource allocation (i.e., considering the resource
allocation of column r1/4 of Table 1a as initial resource allocation), the amount
of resources required not to violate the SLO can be computed as R� = R0T0

TSLO
.

In particular, the additional amount of resources turns out to be equal to 4.06.
Finally, the amount R� is allocated to the activities using the heuristics, and a
new e2e response time CDF is computed (fuchsia curve in Fig. 3a).

Then, we perform a variant of the experiment (add resources first), where we
directly evaluate the additional amount of resources needed to meet the specified
SLO as R�′ = R0T ′

0
TSLO

, where T ′
0 is the workflow expected response time obtained
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(a) Reallocate resources first.

(b) Add resources first.

Fig. 3. CDF of the e2e response time of the workflow of Fig. 1, obtained through two
strategies: (a) reallocating resourced through the heuristics, determining the amount
of resourced needed to satisfy the SLO, and allocating resources again through the
heuristics; and, (b) determining the amount of resourced needed to satisfy the SLO
and allocating resources through the heuristics.

by considering the initial resource allocation of column rstart of Table 1a. In
particular, the additional amount of resources turns out to be equal to 16.15.
The allocation of the increased amount of resources through our heuristics yields
a new e2e response time CDF (fuchsia curve in Fig. 3b).

Figure 3 shows that the e2e response time CDF provided by the reallocate-
resources-first strategy is stochastically larger than the one provided by the add-
resources-first strategy, and is characterized by a larger expected response time.
However, the add-resources-first strategy allocates a larger number of resources,
which actually turn out to be over-provisioned, given that the obtained e2e
response time CDF is stochastically lower than the SLO. Moreover, note that
the time to calculate the new resource provisioning is 0.89 s for the reallocate-
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resources-first strategy and 0.51 s for the add-resources-first strategy, meaning
that there is not a significant loss in performance when the heuristics is executed
twice. Therefore, the reallocate-resources-first strategy is preferable.

5 Conclusions

We have presented a heuristics to perform coordinated scaling of resources in
cloud computing workflows, with the aim of improving the e2e response time
CDF. The heuristic is developed around the concept of job size of an activity,
which is assumed to be invariant with respect to the amount of resources pro-
visioned to the activity, and it is guided by the mean makespan indicators of
sub-workflows. The method has been successfully tested on a complex workflow
with a high degree of concurrency, and applied to the problem of identifying
additional resources needed to guarantee a given SLO, proving to be not only
effective at improving the workflow e2e response time CDF but also efficient. We
are also planning to compare the approach with some state-of-the art method.

Though scaling actions considered in this paper are vertical, the heuristics
could be easily extended to perform horizontal scaling actions. In fact, it is suffi-
cient to intend the involved resources as discrete, i.e., as containers or VMs with
fixed capacities. In this case, the approach should be adapted so as to round up or
down the identified amounts of resources to be allocated. Moreover, the proposed
heuristics can be extended to manage workflow blocks that break the structure
of well-formed nesting of activities, requiring to compute a makespan indicator
and a (sub-optimal) resource assignment for such blocks. The heuristics could
also be extended to efficiently derive the value of α ∈ [0, 1] that minimizes the
makespan indicator of each block. Finally, the heuristics could also be improved
by considering different performance models, so as to ensure the applicability of
the method to contexts in which linearity between response time and amount of
allocated resources may not be sufficient to properly characterize the behaviour
of the system, e.g., due to the presence of not negligible VM start up times.
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