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Abstract—FaultFlow is a library for modeling and evaluation of
dependability of component-based systems. It represents duration
to occurrence and propagation of faults across the hierarchy
of components through non-Markovian distributions, facilitating
fitting of observed data and design assumptions. Additionally,
FaultFlow can be extended to simulate the system behavior and
generate synthetic time series encoding occurrences of faults and
failures and results of diagnostic tests. Time series can in turn be
employed to train and test data-driven methods aimed at various
tasks, notably failure prediction. As a first step in this direction,
we define a flexible and extensible observation metamodel for
FaultFlow, representing type and time of observations of the
system behavior, and facilitating definition of monitoring policies.

Index Terms—Component-based system, timestamped obser-
vations, Model-Driven Engineering, software tools and libraries.

I. INTRODUCTION

Motivation. In the design of component-based systems [4],
quantitative models of the system failure logic [21] represent
propagation of faults and failures across the hierarchy of com-
ponents and support evaluation of dependability attributes [3].
Quantitative models of dependability can be used to simulate
the system behavior and generate time series encoding occur-
rences of faults and failures and results of diagnostic tests. In
turn, time series can be exploited to train and test data-driven
methods with various aims, notably failure prediction [30].
To this end, it is necessary that dependability models support
representation of observations of the system behavior.

Related works. Various tools support specification and eval-
uation of dependability models by leveraging Model-Driven
Engineering (MDE) [9], [32], notably Model-to-Model (M2M)
transformations, with differences in the model expressivity and
in the scope of solution methods. Specifically, FaultFlow [26]]
is an open-source library [12] with custom metamodel, en-
coding fault propagations having non-Markovian (expolyno-
mial [37]) duration distribution, between directly and indi-
rectly connected components (direct and indirect couplings,
respectively). FautFlow models repeated events in the failure
logic but not repairs. Its metamodel instances can be derived
from SysML Block Definition Diagrams (BDDs) [24] and
Stochastic Fault Trees (SFTs), and translated into Stochastic
Time Petri Nets (STPNs), deriving the time-to-failure distri-
bution through semi-symbolic analysis based on stochastic
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state classes [17]. FaultFlow metamodel instances can be
translated also into an extension of UML statecharts [16]
if there are no repeated events, deriving fault importance
measures by efficient numerical analysis [6]. CHESS [5],
[8]], [22]] is a partially open-source tool based on the custom
language CHESS-ML, containing tailored subsets of SysML
and the UML profile for Modeling and Analysis of Real-
Time Embedded systems (MARTE) [23], representing se-
lected non-Markovian duration distributions, both direct and
indirect couplings, repeated events, and repairs. CHESS im-
plements translation first to the Intermediate Dependability
Model (IDM) [22]] and then to Continuous Time Markov
Chains (CTMCs) and Stochastic Petri Nets (SPNs) [[7], exploit-
ing fault tree analysis and simulation to compute reliability
and availability measures. OSATE [[11]], [[13] is an open-source
tool mainly exploiting the Architecture Analysis & Design
Language (AADL) [14] Annexes on Error Model [29] and
Safety [36]], supporting representation of Exponential duration
distributions and repair activities while not modeling indirect
couplings and repeated events. OSATE implements translation
into Discrete Time Markov Chain (DTMCs) and CTMCs
analyzed by PRISM [20], exploiting numerical analysis for
computation of failure probabilities. Although no longer sup-
ported, ADAPT [27] implemented derivation of Generalized
Stochastic Petri Nets (GSPNs) [1]] from AADL models anno-
tated with dependability attributes, and ASTRO [33]] supported
dependability modeling and analysis by exploiting Reliability
Block Diagrams (RBDs), CTMCs, and SPNs. Other general-
purpose tools for quantitative evaluation of stochastic mod-
els could be used for dependability modeling and analysis,
though requiring users to have significant modeling expertise,
e.g., SHARPE [37], ORIS [25]], GreatSPN [2]], TimeNET [40],
PRISM [19], Mobius [[10], CPN IDE [[18], [38], Mercury [34].
As a common trait, none of these tools supports in any way
the representation of observations of the system behavior.
Contribution. We define a flexible and extensible observa-
tion metamodel for FaultFlow, using the Reflection architec-
tural pattern [31]] and the Observation & Measurement analysis
pattern [[15] to facilitate customization of monitoring policies.
Translation of observation metamodel instances into STPNs is
defined, generating an STPN submodel where each transition
represents the acquisition of an observation on some compo-
nent, and has an entry-point method returning the observation
value based on the state of the observed component. A tech-
nical report illustrating application of the approach to a case
study is available at https://doi.org/10.5281/zenodo.10473653.
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In the rest of the paper, we extend FaultFlow with an obser-
vation metamodel (Section [M)), discuss threats to validity [28]]
(Section [III)), and draw our conclusions (Section [[V).

II. OBSERVATION METAMODEL
A. Extended FaultFlow metamodel

Fig. [1] shows the FaultFlow metamodel, representing both
the structure of a system (classes with blue scale background)
and its failure logic (classes with orange scale background).
The metamodel implementation leverages the Reflection archi-
tectural pattern [31]]. Thus, classes at the knowledge (abstract)
level encode types (e.g., of component, fault, failure, etc.),
while classes at the operational (concrete) level represent
instances (e.g., of component, fault, failure, etc.). A detailed
description of the FaultFlow metamodel is reported in [26].

We extend FaultFlow with an observation metamodel, by ex-
ploiting the Observation & Measurement analysis pattern [[15]],
still leveraging the Reflection architectural pattern. The added
classes are highlighted with yellow scale background in the
metamodel shown in Fig.[I] On the one hand, at the knowledge
level, we introduce the concept of observation type (repre-
sented by class ObservationType) which can be acquired
on a type of component through some type of observation port
(class ObservationPortType). On the other hand, at the
operational level, each scenario (class Scenario) is associ-
ated not only with a set of components (class Component)
but also with a set of observations (class Observation), and
each component is associated with a set of observation ports
(class ObservationPort). In particular, an observation is
acquired on a component through an observation port based
on the component state (class State). In turn, the component
state consists of a set of timestamped events (class Event),
each being a fault (class Fault), or an error (class Error),
or a failure (class Failure). In doing so, the metamodel
supports representation of a variety of observation policies,
e.g., memoryless policies where observations depend only
on the last event occurred to a component, and memoryfull
policies where observations depend on the whole event history.

An observation acquired on a type of phenomenon (class
PhenomenonType), e.g., temperature, according to a proto-
col (class Protocol) can be either a qualitative observation
(class CategoryObservation) whose value is a category
(class Category), e.g., high temperature, or a quantitative
observation (class Measurement) whose value is a quantity
(class Quantity) referred to a unit measure (class Unit),
e.g., 20 degree celsius temperature. Moreover, an observation
is associated with timing information (class TimeRecord)
characterizing the time instant (class TimePoint) or the time
interval (class TimePeriod) in which the observation is ac-
quired (attribute recordingTime of class Observation)
and is valid (attribute validity of class Observation).

It is worth noting that, thanks to the Reflection architectural
pattern, classes at both knowledge and operational levels are
independent of domain-specific concepts (e.g., specific types
of components, specific decomposition of a component of a
specific type into sub-components), which are likely to change,

in principle even frequently. Therefore, these classes turn out
to be few (i.e., as shown in Fig. [I), they are implemented by
ICT experts, and they are expected to change or increase in
number only if the conceptual elements need to be changed or
extended (e.g., if repair policies need to be represented). Con-
versely, specific types (e.g., laptop type X1, fault type F1 of
laptop type X1) are implemented by domain experts as objects
of classes at the knowledge level, and specific instances of
specific types (e.g., laptop of type X1 with serial number 1234,
fault of type F1 occurred at time T to laptop of type X1 with
serial number 1234) are implemented by domain professionals
as objects of classes at the operational level. Thus, definition
of structure, failure logic, and observation policies of a system
amounts to the implementation of objects and not classes,
facilitating usage, maintenance, and extendibility.

B. Extended FaultFlow-to-Sirio transformation

FaultFlow metamodel instances can be translated into Sirio
metamodel instances [35] representing STPNs [39]. STPNs
consist of transitions (depicted as bars), tokens within places
(dots in circles), and directed arcs (directed arrows) from
input places to transitions and from transitions to output
places. Transitions model stochastic durations of activities;
directed arcs model precedence relations among activities; and,
tokens model the system discrete logical state. A transition is
enabled by a marking (i.e., assignment of tokens to places)
if each of its input places contains at least one token and
its enabling function evaluates to true. Upon enabling, each
transition samples a time-to-fire from its distribution, which
can be Exponential or non-Exponential. In the latter case, if
the transition time-to-fire takes a deterministic value 7 (i.e., it
follows the generalized distribution of a Dirac Delta function),
the transition is termed deterministic (DET) if 7 # 0 and
immediate (IMM) if 7 = 0. The transition with minimum time-
to-fire fires, removing one token from each of its input places
and adding one token to each of its output places. Ties among
transitions with equal time-to-fire are solved by a random
switch determined by probabilistic weights of transitions.

FaultFlow-to-Sirio transformation [26] yields an STPN of
the failure logic. Specifically, each internal fault (modeled by
class InternalFaultMode in Fig. is translated into
a transition modeling the time-to-fault duration (transition
internalFaultOccurrence in Fig. 2(a)), with input
place containing one token and modeling activation of the
fault process, and output place modeling the fault occur-
rence. Each fault-to-failure propagation (modeled by classes
ErrorMode and FailureMode in Fig.[I) is translated into
a transition modeling the fault-to-failure duration (transition
faultToFailure in Fig. 2(b)), with enabling function
being true if the condition on activation of faults is true,
input place containing one token and modeling activation of
the fault-to-failure process, and output place modeling failure
occurrence. Each failure-to-fault propagation (modeled by
classes ExternalFaultMode and PropagationPort-
Type in Fig.|l) is translated into an IMM transition (transition
failureToExternalFault in Fig.2(b)), with input place
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Fig. 1. Extended FaultFlow metamodel: blue scale background highlights classes modeling the system structure, orange scale background highlights classes
modeling the system failure logic, and yellow scale background highlights classes modeling the system observation policies.
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Fig. 2. STPN fragments modeling: (a) occurrence of internal faults; (b) fault-
to-failure and failure-to-fault propagations; and, (c) observation processes.

modeling failure occurrence, and output place being the input
place of two IMM transitions with weight p and 1 — p,

modeling fault propagation and non-propagation, respectively
(transitions propagatedFailure and notPropagated-
Failure in Fig. 2(b)] respectively).

We extend the transformation to represent observation poli-
cies. Each observation process (classes ObservationType
and ObservationPortType in Fig. [I) is translated into
a transition modeling observation acquisition, either recur-
rent acquisition (transition recurrentObservation in
Fig. or one-shot acquisition upon event occurrence (tran-
sition failure-Observation). The acquisition pattern
of each observation port is not directly represented in the
metamodel, and can be easily implemented by domain experts
through the time-to-fire PDF of the corresponding transition.

To collect observations during STPN simulation, each tran-
sition in the observation submodel is associated with: a new
feature termed ComponentFea-ture identifying the ob-
served component; and, a new feature termed Observation-
Feature with entry-point method (implemented by domain
experts) returning the observation value based on the state of
the observed component. Upon each transition firing in the
STPN observation submodel, the entry-point method of the
fired transition is executed, and the returned value is stored as



an Observation instance in the metamodel instance.

III. THREATS TO VALIDITY

Construct validity. Feasibility of the approach is shown by
its application to an example (see the technical report available
at https://doi.org/10.5281/zenodo.10473653), manually model-
ing observation policies in metamodel instances and translating
them to STPNs, which may be costly for non-experts. To miti-
gate this issue during approach implementation, metamodel-to-
STPN transformation is formalized so as to be unambiguous.

Internal validity. The approach requires specification of
stochastic parameters, e.g., time-to-fault PDF. To mitigate this
threat, in the example, these parameters are derived from a
database collecting historical data on component failures.

External validity. Application to domains other than the
one considered in the example may be not completely easy.
To mitigate this threat, the FaultFlow metamodel represents
common system features, independent of application domains.

IV. CONCLUSIONS

This paper devises a methodology to define a flexible and
extensible observation metamodel for dependability evaluation
tools. Future implementation will enable simulation of STPN
models representing failure logic and monitoring policies of
component-based systems, and generation of synthetic time
series of observations of the system behavior, making Fault-
Flow an agile workbench to train and test data-driven methods
with various purposes, e.g., failure prediction. Future work
also includes representation of new concepts in the metamodel,
e.g., sensitivity and specificity of diagnostic tests.
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