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Abstract With the recent advancements in computing technologies, new paradigms
have emerged enabling users to access a large variety of distributed resources,
overcoming several limitations of localized applications and information storage.
Among these paradigms, Mobile Edge Computing (MEC) places storage and com-
puting capabilities at the edge of the network, significantly decreasing congestion
and service response times, at the cost of limited capacities. Within this context, the
emergence of novel computationally intensive services has triggered the necessity
to design algorithms that adaptively scale resources, achieving solutions tailored to
traffic demand. In this paper, we present a preliminary scaling method to determine
the resource provisioning of complex workflows of web services that are distributed
on a MEC infrastructure, with the intent of improving the distribution of the end-to-
end response time of the workflow. The method is designed to run compositionally,
exploiting a structured hierarchical workflow representation, enabling efficient top-
down determination of the resource provisioning. The method is also formalized to
act considering the inherent limitations and complexities of an MEC network land-
scape. In so doing, we demonstrate the applicability of the approach on two syn-
thetic application scenarios, confirming the validity of the proposed elastic scheme
in optimizing resource management within a resource-constrained MEC network.

1 Introduction

Recent advancements in networking and computing technologies have sparked a
growing interest in considering computation and communication in a collabora-
tive and distributed manner, aligning with the network-computing paradigm [4].
Network computing introduces a novel computing paradigm wherein all informa-
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tion, data, and software applications exist on a network accessed by users on de-
mand, whose infrastructure is typically deployed within the edge-to-cloud contin-
uum. This computing approach promises to enable users to access a comprehensive
range of resources from any location, eliminating the limitations associated with lo-
calized storage of information and applications [5]. This is due to the presence of
Mobile Edge Computing (MEC) nodes which move storage and computing facil-
ities at the edge of the network, close to end-users, resulting in significant perfor-
mance enhancements, especially in terms of latency and response times. At the same
time, the upcoming next-generation networks will enable the new era of computa-
tional intensive service classes, characterized by heterogeneous quality-of-service
(QoS) and quality-of-experience requirements. To ensure effective service provi-
sioning, the network resources need to be optimized and handled properly. Due to
the computational-hungry nature of next-generation applications, and because of
the high-velocity links expected to serve the new-generation networks, the usage of
computational resources, if not optimized, risks becoming the bottleneck of novel
applications. When resource exploitation is optimized, service providers only incur
costs for the resources they utilize at a given moment. When managed effectively,
this approach can lead to lower costs and a higher quality of service compared to
hosting on traditional hardware [3]. Due to the dynamic and unpredictable nature of
shared resources, autoscaling mechanisms must be designed to handle the complex-
ity and time-varying nature of resource demand. The goal is to achieve a runtime
scaling system that is self-aware, self-adaptive, and reliable in the face of changing
demands [3].

Recently, autoscaling, originally designed and confined to cloud-based solutions,
is gaining attention for its extension into distributed MEC contexts. For example,
the paper [11] proposes a latency-optimal scheme to solve the monitoring func-
tion placement problem, considering an edge-to-cloud landscape. In order to favor
the system scalability, authors design a hierarchical monitoring system topology,
where a metaheuristic algorithm is exploited to adaptively scale of resource pool of
the MEC infrastructure. Then, an online scaling scheme was developed to perform
real-time and on-demand resource allocation in such a monitoring system. In [9],
the authors introduced deep learning models that encompass both centralized and
federated strategies. These models are designed to execute both horizontal and ver-
tical autoscaling across multi-domain networks. Authors in [6], propose an innova-
tive auto-scaling method using a deep reinforcement learning-based algorithm. This
method aims to dynamically adjust the number of instances assigned to an atomic
microservice that composes a service, thereby optimizing resource allocation and
potentially enhancing service performance.

An innovative approach to meet the dynamically changing network service de-
mands in 5G networks was developed in [8]. The authors applied machine learning
models for auto-scaling and predicting the required number of virtual network func-
tion instances based on traffic demand. Furthermore, Integer Linear Programming
techniques were exploited to solve a joint user association and Service Function
Chain placement problem. To address the scalability concern of the ILP model, they
proposed a heuristic algorithm. However, existing solutions do not consider the ne-



Elastic autoscaling for distributed workflows in MEC networks 3

cessity to realize coordinated scaling among distributed MEC resources for service
workflows, i.e., services composed of atomic elementary tasks structured as directed
acyclic graphs. In [1], a coordinated compositional approach is proposed to scale
the resource provisioning of a workflow of services. The approach minimizes the
workflow e2e response time, by considering topological information and exploit-
ing a stochastic characterization of service durations, for an environment where any
transmission costs occur. In this reference, the main contributions of this paper can
be summarized as follows:

• The design and development of an effective coordinated vertical scaling scheme
of MEC node resources to execute stochastic workflows within the distributed
edge network. The objective is to meet QoS constraints by improving the end-to-
end (e2e) response time distribution of the workflow.

• Definition of a heuristic that, through performing an efficient compositional anal-
ysis, deduces the resource provisioning of each sub-workflow. The proposed al-
gorithm employs a structured workflow model to scale resources in a top-down
fashion, including inter-MEC node communication costs.

• Application scenarios aimed at demonstrating the applicability of the method
to workflow of services that are deployed on a MEC network, at illustrating a
methodology to explore the solution space of the problem, and at highlighting
the complexity of the problem which is opened to many relevant challenges.

2 Workflow Modelling

We model workflows by combining Stochastic Time Petri Net (STPN) [10] blocks.
An STPN block is a single-entry/single-exit model, which receives a token when
workflow execution starts, and eventually ends with probability 1 (w.p.1). Blocks
are recursively combined with sequential, split/join, and choice/merge workflow
patterns [7]. We reference workflows according to the following EBNF syntax:

< block > ::=
SEQ(< block > {,< block >}) |
AND(< block > {,< block >}) |
XOR(⟨< block >, prob⟩{,⟨< block >, prob⟩}) |
ACT

where ACT is an elementary activity (e.g., activity B in Fig. 1b), SEQ models se-
quential behaviors (e.g.,activity S1 in Fig. 1), AND models concurrent behaviors
(e.g., activity A1 in Fig. 1), and XOR models alternative behaviors that occur with
different probabilities (e.g., activity X1 in Fig. 1). A workflow is thus modeled as a
structure tree [2] S = ⟨N,n0⟩, where N is the set of nodes (i.e., blocks) and n0 ∈ N
is the root node (i.e., the entire workflow). Each structure tree node ni ∈ N is char-
acterized by the tuple ⟨ni := Ri,Zi,Ti,Xi⟩, where Ri is the amount of provisioned
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resources, Zi is the generally distributed random variable characterizing the node
e2e response time that arises from the given provisioning, Ti = E [Zi] is the expected
value of the response time, and Xi = RiTi is the job size, representing the amount
of work required to complete the node with the assigned resources. As workflows
are recursive compositions of STPN blocks, topological complexity can notably in-
creases. Complexity is further exacerbated by the general characterization of the
activity durations, which lead to the unfeasibility of many effective analysis meth-
ods. In such cases, to evaluate the e2e response time distribution of a node, we
leverage on a compositional technique [2]. In particular, workflows are evaluated by
performing a top-down visit of the structure tree to estimate the analysis complexity
of blocks, evaluating the response time distribution of the identified sub-workflows
in isolation, and finally performing a bottom-up recomposition of the obtained re-
sults. In particular, when workflows are defined by well-nested composite blocks
(i.e., composition of AND, SEQ, and XOR blocks), the exact e2e response time
distribution can be evaluated by recursive numerical analysis.
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Fig. 1: (a) Structure tree and (b) STPN modeling a synthetic workflow.
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3 A communication costs aware scaling approach

3.1 A Performance Model

We propose a coordinated approach to determine the optimal resource provision-
ing of a workflow of services, that can be subject to communication costs incoming
from distinct placements of the services on an edge network. The approach deter-
mines how to distribute an arbitrary amount of resources Rin to the elementary activ-
ities of a workflow, i.e., the leaves of the workflow structure tree, with the intent of
minimizing the e2e response time distribution of the workflow. Resource allocations
are determined by performing a top-down approach that splits the input resources to
the child nodes, exploiting both topological information and the response time char-
acterization of each node. In particular, the approach leverages on the assumption
that the job size of an activity is invariant with respect to the provisioned resources,
i.e. given two different resource allocations Ri,R′

i resulting in the expected response
times Ti and T ′

i , then TiRi = T ′
i R′

i =Xi, for each node ni of the workflow. This enables
to express the expected response time of a node as a function of the child node re-
sources, which is employed as the objective function of an optimization problem. To
deal with communication costs, we include a probability distribution representing
the time spent to reach services that are hosted on different MEC nodes. In partic-
ular, Di is introduced to represent the expected value of such communication time,
for each node ni. Consequently, the performance model of a node ni is defined as:
Ti =Xi/Ri+Di, where Xi/Ri is the computation time of the activity. Communication
times can be specified both on simple and composite activities, and are propagated
bottom-up on the workflow nodes. In particular:

• For a sequence of k activities, DSEQ(n0,n1,...,nk) = ∑
k
i=0 Di;

• For a fork/join of k, DAND(n0,n1,...,nk) = max(D0,D1, ...,Dk);
• For a random choice between k activities, DXOR(⟨n0,p0⟩,⟨n1,p1⟩,...,⟨nk,pk⟩)=∑

k
i=0 piDi;

Note that, since it is not possible to determine the exact expected communication
time of a fork/join activity, we select the maximum of its children. In so doing, we
design the approach to deal with safety-critical contexts, where worst case scenario
is typically considered.

To summarize how the approach proceeds as follows:

• Initially, an arbitrary amount of resources Rin
0 is assigned to the root node n0.

• For each non-leaf node nk, the amount of input resources Rin
k is split by assigning

an amount R⋆
j to each child node n j, i.e., ∑n j∈Ck

R⋆
j = Rin

k ; the assignment exploits
a performance models where the job size of an activity is invariant with respect
to any resource variation and communication costs changes the way resources
are distributed.

By induction, the sum of the amounts of resources allocated to the leaf nodes is
equal to the amount of resources of the root node, i.e., ∑nk|Ck= /0 R⋆

k = Rin
0 .
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3.2 Resource allocation decisions

We characterize different rules to determine the resource provisioning of a node,
that are based on the workflow pattern represented by the node.
Elementary Activities. Let nk be an elementary activity, when a new resource allo-
cation R⋆ is evaluated by the approach, then its response time changes as

T ⋆
k =

R⋆

Rk
Ti (1)

which leads to a transformation of the node distribution parameters.
Sequential Activities. Let nk = SEQ(ni,n j) be the sequence of ni and n j. Then:

Tk = Ti +Tj =
Xi

Ri
+Di +

X j

Rin
k −Ri

+D j (2)

has a minimum with the following allocation

R⋆
i =

√
Xi√

Xi +
√

X j
Rin

k . (3)

The result is obtained by imposing dTk
dRi

= 0, and it can be extended by induction
to the sequence of K > 2 activities, SEQ(n1, . . . ,nK):

R⋆
i =

√
Xi

∑
K
i=1

√
Xi

Rin
k . (4)

Concurrent Activities. Let nk = AND(ni,n j) be a fork/join between ni and n j.
Then:

Tk = max(Ti,Tj) = max
(

Xi

Ri
+Di,

X j

Rin
k −Ri

+D j

)
(5)

Since response time is not defined as an explicit function of Ri, the minimum can
not be evaluated exploiting the Fermat theorem. Hence, we provide a heuristics
evaluation of R⋆

i which imposes equality between response times of ni and n j:

Xi

Ri
+Di =

X j

(Rin
k −Ri)

+D j. (6)

This leads to the allocation:

R⋆
i =


Xi

Xi+X j
Rin

k Di = D j

∆DRin
k −Xi−X j±

√
4∆DRin

k Xi+(Xi+X j−∆DRin
k )2

2∆D Di ̸= D j

(7)

where ∆D = Di − D j. In particular, when Di ̸= D j, it is chosen the solution
for which R⋆

i > 0 and R⋆
i < Rin

k . The solution is extended to m activities by re-
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arranging the topology of the fork/join into a 2-children fork/join pattern, i.e.,
AND(n1,n2, ...nN) = AND(n1,AND(n2, ...,nN)).
Alternative Activities. Let nk = XOR(⟨ni, pi⟩,⟨n j, p j⟩) be a random alternative
choice ni and n j, with probabilities pi and p j = 1− pi. Then:

Tk = piTi + p jTj = pi

(
Xi

Ri
+Di

)
+ p j

(
X j

Rin
k −Ri

+Di

)
(8)

has the minimum:

T ⋆
k =

(√
piXi +

√
p jX j

)2

Rin
k

(9)

for the following resource allocation:

R⋆
i =

√
piXi√

piXi +
√

p jX j
Rin

k (10)

which is in turn obtained by exploiting the Fermat theorem. As the solution shows,
the optimal allocation of a XOR node is a generalization of the optimal allocation
for a SEQ node. Hence, resource allocation for n activities, can be derived as done
for sequential nodes. Note that resources Rin

k are split among activities i and j, in-
dependently from how they occur or not. This typically occurs in service-oriented
applications, where each service has a reserved amount of resources. In contrast,
for Function as a Service (FaaS) solutions, resources are allocated on-demand only
when a service is executed: in this case, resource costs are accrued only for the se-
lected service, and the expected cost is piRi + p jR j instead of Ri +R j, resulting in a
different optimal allocation.

4 Application Scenarios

We illustrate a preliminary methodology to explore the space design of a MEC
network hosting services of a workflow. We consider a synthetic and well-nested
workflow (see Figs. 1a and 1b), combining 19 web services, each distributed as a
5-phases Erlang distribution with rate randomly selected in [0,10], for a maximum
concurrency degree equals to 4. It is assumed that the considered response time
arises by provisioning 1 resource to each service. We consider a QoS requirement
obtained as 5-phase Erlang distribution whose rate is chosen to fit an expected value
of 12.96ms, which is the half of the workflow expected response time. Then, we
consider two scenarios. In the first, each service of the workflow is deployed on a
single MEC node; in the second, services B, C, M, N, P, Q are placed in a differ-
ent MEC node, thus introducing some communication costs in the QoS requirement
fit. In particular, communication times are characterized as uniform distributions,
where support bounds are randomly selected in [0,5]. In both scenarios, we assume
that each node has an residual availability of 20 resources. Fig. 2a illustrates the im-
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pact of limited MEC node resource availability to the problem of resource scaling.
By applying the proposed technique, the QoS requirement could be met without
significant effort (green line), by provisioning a total amount of 22.91 resources.
However, this quantity overcomes the considered availability, requiring to adjust the
computed provisioning, but ending up worsening the e2e response time distribution
(blue line), which results not to fulfill the QoS requirement. Figure 2b illustrates
how communication costs enable to mitigate the impact of limited resource avail-
ability. The presence of transmission costs implies a higher resource demand for the
entire workflow to fulfill the QoS requirement, which is met with a total amount of
27.01 resources (green line). However, transmission costs affect the ways resources
are distributed among the services and allocated to the considered MEC nodes. In
particular, the total amount of resources allocated on the node that hosts services
that causes transmission costs is 8.46, while in the other node 18.64 resources are
allocated. Despite the higher resource costs, transmission costs mitigate MEC node
saturation, which may be a desirable implication in the prospect of solving other
problems such as service offloading or dynamic service placement. Table 1 reports
the resource allocations evaluated for the considered scenarios. Column 2 provides
the provisioning of resources when no constraints are given on the resource avail-
ability of the nodes. Column 3 reports the resource provisioning when all services
are deployed on the single MEC node A. Finally, column 5 reports the resource
allocation in the case services B, C, M, N, P, Q are deployed on the MEC node
B. The last row of the table reports the cumulative resources provisioning of each
considered scenario.

The proposed scenarios allow us to highlight the inherent complexity of the prob-
lem of provisioning resources to services hosted on MEC nodes, by illustrating a
methodology through which exploring the design space of a workflow of services
that is deployed at the edge of the network.

(a) Single MEC node (b) Multiple MEC nodes

Fig. 2: Application of the proposed approach to different MEC network scenarios.
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SERVICE OPTIMAL PROVISIONING RESOURCES NODE RESOURCES NODE
A 1.87 1.66

A

2.03

A

D 0.80 0.69 1.00
E 1.96 1.68 0.80
F 0.56 0.48 1.97
G 2.53 2.17 2.54
H 1.34 1.15 1.34
I 1.52 1.31 1.53
J 0.35 0.30 0.35
K 0.45 0.39 0.46
L 2.29 2.03 2.49
Q 1.49 1.32 1.91
R 1.88 1.52 2.21
B 0.63 0.54 1.36

B

C 1.00 0.85 1.52
M 0.93 0.82 1.19
N 1.08 0.95 1.38
O 1.22 1.08 1.56
P 1.14 1.01 1.46
TOTAL 22.91 20.00 27.01

Table 1: Resources provisioning obtained by applying the proposed approach with-
out constraint on the resource availability (column 2), when services are deployed
on a single MEC node (column 3) and when services are deployed on different MEC
nodes (column 5).

5 Conclusions

In this paper, we propose a coordinated approach to evaluate the resource provi-
sioning of a workflow of web services that are deployed at the edge of a network.
Tha approach is experimented on a workflow that exhibits a well-nested topology
with a non-negligible degree of complexity, with a maximum concurrency degree
equals to 4. Evaluation of resource provisioning is performed in a top-down fashion,
exploiting a hierarchical formalism, termed structure tree. To identify resource allo-
cations for elementary web services, the approach solves an optimization problem
which aims at minimizing the response time of structure tree nodes. In so doing,
we leverage on an assumption of invariance of the job size of each node. We also
characterize transmission costs to deal with services deployed on different MEC
nodes.

Finally, the experimented workflow allows us to illustrate a methodology to ex-
plore the design space of a workflow that is deployed on an MEC network, illus-
trating how the approach can be exploited to analyze different scenarios. The re-
sults prove the applicability of the method, and highlight the inherent complexity of
evaluating the optimal resource provisioning for a workflow deployed on an edge
network.
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